Math, asked by saiprasaad, 1 year ago

find the zeros of cubic polynomial x^3+6x^2+11x+6


saiprasaad: x^3+6x^2

Answers

Answered by ajarchit
3
x³ + 6x²+11x+6
x³+(x²+5x²)+(5x+6x)+6
(x³+x²)+(5x²+5x)+(6x+6)
x²(x+1)+5x(x+1)+6(x+1)
(x+1)(x²+5x+6)
(x+1)(x²+|2x+3x|+6)
(x+1)[x(x+2)+3(x+2)]
(x+1)(x+2)(x+3)
if,
x+1=0
x= -1

x+2=0
x = -2

x+3=0
x= -3


Attachments:

saiprasaad: dude send the photo clearly
saiprasaad: cant see
ajarchit: i am sorry my camera is not working properly
saiprasaad: k leave it
Answered by snehitha2
6
x³ + 6x²+11x+6=0

x³+(x²+5x²)+(5x+6x)+6=0

(x³+x²)+(5x²+5x)+(6x+6)=0

x²(x+1)+5x(x+1)+6(x+1)=0

(x+1)(x²+5x+6)=0

(x+1)(x²+(2x+3x)+6)=0

(x+1)[x(x+2)+3(x+2)]=0

(x+1)(x+2)(x+3)=0

x+1=0 ; x=-1

x+2=0 ; x= -2

x+3=0 ; x= -3

Therefore,the zeroes of the polynomial are -1,-2 and -3.

Hope it helps...

saiprasaad: thanks
Similar questions