find the zeros of cubic polynomial x^3+6x^2+11x+6
saiprasaad:
x^3+6x^2
Answers
Answered by
3
x³ + 6x²+11x+6
x³+(x²+5x²)+(5x+6x)+6
(x³+x²)+(5x²+5x)+(6x+6)
x²(x+1)+5x(x+1)+6(x+1)
(x+1)(x²+5x+6)
(x+1)(x²+|2x+3x|+6)
(x+1)[x(x+2)+3(x+2)]
(x+1)(x+2)(x+3)
if,
x+1=0
x= -1
x+2=0
x = -2
x+3=0
x= -3
x³+(x²+5x²)+(5x+6x)+6
(x³+x²)+(5x²+5x)+(6x+6)
x²(x+1)+5x(x+1)+6(x+1)
(x+1)(x²+5x+6)
(x+1)(x²+|2x+3x|+6)
(x+1)[x(x+2)+3(x+2)]
(x+1)(x+2)(x+3)
if,
x+1=0
x= -1
x+2=0
x = -2
x+3=0
x= -3
Attachments:
Answered by
6
x³ + 6x²+11x+6=0
x³+(x²+5x²)+(5x+6x)+6=0
(x³+x²)+(5x²+5x)+(6x+6)=0
x²(x+1)+5x(x+1)+6(x+1)=0
(x+1)(x²+5x+6)=0
(x+1)(x²+(2x+3x)+6)=0
(x+1)[x(x+2)+3(x+2)]=0
(x+1)(x+2)(x+3)=0
x+1=0 ; x=-1
x+2=0 ; x= -2
x+3=0 ; x= -3
Therefore,the zeroes of the polynomial are -1,-2 and -3.
Hope it helps...
x³+(x²+5x²)+(5x+6x)+6=0
(x³+x²)+(5x²+5x)+(6x+6)=0
x²(x+1)+5x(x+1)+6(x+1)=0
(x+1)(x²+5x+6)=0
(x+1)(x²+(2x+3x)+6)=0
(x+1)[x(x+2)+3(x+2)]=0
(x+1)(x+2)(x+3)=0
x+1=0 ; x=-1
x+2=0 ; x= -2
x+3=0 ; x= -3
Therefore,the zeroes of the polynomial are -1,-2 and -3.
Hope it helps...
Similar questions