Math, asked by alexanderabraham1963, 11 months ago

find the zeros of cubic polynomial x cube minus 5 x square - 2 X + 24 when it is given that the product zeros is 12​

Answers

Answered by ShírIey
58

Correct Question:

Find the zeros of the polynomial f(x)=x³- 5x²-2x+ 24 if it is Given that product of its two zeros is 12.

AnswEr:

• x³ - 5x² - 2x + 24

Product of its zeroes is 12.

Let us Consider that the Zeroes of the polynomial be \sf\:\alpha,\beta\; and \; \gamma

\dag\:\:\bold{\underline{\sf{\red{According\:to\:Question\;Now,}}}}

\longrightarrow\sf\:\alpha + \beta = 12 ----Eq(1)

We know that,

\longrightarrow\sf\: \alpha\:\beta\:\gamma = \dfrac{-Costant \: Term}{Coefficient\: of \: x^2}

\longrightarrow\sf\: -24 ------Eq(2)

And,

\longrightarrow\sf\:\alpha \:+\:\beta\:+\:\gamma = \dfrac{- Coefficient\: of \:x^2}{Coefficient\: of\: x^3}

\longrightarrow\sf\: -\dfrac{(-5)}{1}

\longrightarrow\sf\: 5 --------Eq(3)

\rule{120}2

Now, Substituting the Value of \sf\:\alpha\:\beta in Equation (2).

\longrightarrow\sf\:\alpha \:\beta\:\gamma = -24

\longrightarrow\sf\:12 \gamma =- 24

\longrightarrow\sf\: \gamma =\dfrac{-24}{\:\:12}

\longrightarrow\large{\underline{\boxed{\sf{\red{\gamma\:=\: -2}}}}}

Now, Substituting the value of \sf\gamma in Equation (3)

\longrightarrow\sf\:\alpha \:+\:\beta \:+\:\gamma = 5

\longrightarrow\sf\:\alpha + \beta + (-2) = 5

\longrightarrow\sf\:\alpha + \beta = 5 + 2

\longrightarrow\sf\:\alpha + \beta = 7 -------Eq(4)

\dag\:\:\small\bold{\underline{\sf{\red{Squaring\: both \:sides}}}}

\longrightarrow\sf\:(\alpha + \beta)^2 \:=\: 7^2

Using Identity

\sf\:(\alpha + \beta) = (\alpha \:-\beta)^2 + 4 (\alpha\:\beta)

So,

\longrightarrow\sf\: (\alpha\:-\:beta )^2 + 4 \times \: 12 = 49

\longrightarrow\sf\:(\alpha \:-\:\beta)^2 + 48 = 49

\longrightarrow\sf\:(\alpha \:-\:\beta)^2 = 49 - 48

\longrightarrow\sf\:(\alpha \:-\:\beta)^2 = 1

Here, we get \sf\:\alpha\:-\:\beta = 1 -------Eq(5)

Adding Equations (4) & (5)

\longrightarrow\sf\:\alpha + \beta = 7

\longrightarrow\sf\:\alpha - \beta = 1

\longrightarrow\sf\:2\alpha = 8

\longrightarrow\sf\:\alpha = \dfrac{8}{2}

\longrightarrow\large{\underline{\boxed{\sf{\pink{\alpha \:=\: 4}}}}}

\rule{120}2

Now, Substituting the Value of \sf\alpha in Equation (5)

\longrightarrow\sf\: \alpha - \beta = 1

\longrightarrow\sf\:4 - \beta = 1

\longrightarrow\sf\: - \beta = 4 - 1

\longrightarrow\sf\: -\beta = - 3

\longrightarrow\large{\underline{\boxed{\sf{\pink{\beta \:=\: 3}}}}}

\bold{\underline{\sf{\blue{Hence,\: The\:Zeroes\:are\: 4,\:3,\:-2.}}}}

Answered by MarshmellowGirl
8

\mathfrak{\huge{\pink{ANSWER}}}

Attachments:
Similar questions