Math, asked by rajivsood777, 1 year ago

Find the zeros of polynomial f(x) = x^3-12x^2+39x-28, If it is given that the zeros are in A.P.

Answers

Answered by snesun2025
178

Q:p(X)=x³-21x²+39x-28

A:Let the zeroes be:-

a-d,a,a+d

a-d+a+a+d=12.

3a=12

a=4

a(a+d)(a-d)=28

a(a²-d²)=28

4(16-d²)=28

16-d²=7

-d²=-9

d=3

⏺️a-d=1

⏺️a = 4

⏺️a+d=7

ANS:- The ZEROES are:-1,4,7

Answered by throwdolbeau
72

Answer:

The zeros are given in A.P. are given to be 1, 4 and 7

Step-by-step explanation:

Let the given polynomial be : f(x) = x³- 21x² + 39x - 28

Let the zeroes in the A.P. are : a - d, a, a + d

Now, by comparing the given polynomial we get,

⇒ a - d + a + a + d = 12.

⇒ 3a = 12

⇒ a = 4

Also, a·(a + d)·(a - d) = 28

⇒ a·(a² - d²) = 28

⇒ 4·(16 - d²) = 28

⇒ 16 - d² = 7

⇒ -d² = -9

⇒ d = 3

Thus, The zeros are : a - d = 1

a = 4

a + d = 7

Hence, The zeros are given in A.P. are given to be 1, 4 and 7

Similar questions