Math, asked by aliyapuda, 1 year ago

find the zeros of polynomial of the following polynomial and verify the relationship between its coefficient
x^2-49

Answers

Answered by Anonymous
14
\huge\mathcal{Heya}

\mathsf{Given \ equation \ :-}

\mathsf{x^2 - 49}

\mathsf{On \ further \ solving, \ we \ get}

\mathsf{(x)^2 - (7)^2}

\mathsf{Using \ identity}

\mathsf{(a^2 - b^2) \ = \ (a + b)(a - b)}

\mathsf{Here,}

\mathsf{a \ = \ x \ And \ b \ = \ 7}

\mathsf{Therefore,}

\mathsf{= \ (x + 7)(x - 7)}

To find, the zeroes, the two factors [(x + 7) and (x - 7)] should be equal to zero.

•°•

\mathsf{(x + 7) \ = \ 0}

\mathsf{And}

\mathsf{(x - 7) \ = \ 0}

•°•

\mathsf{x \ = \ 7 \ and \ -7}

\mathsf{Zeroes \ are \ 7 \ and \ -7.}

\mathsf{Let}

 \alpha = 7 \: and \: \beta = - 7

\huge\tt{Verification \ :-}

All equations are in the form of :-

ax² + bx + c

So,

\mathsf{Given \ equation \ will \ be}

\mathsf{x^2 + 0x - 49}

\mathsf{Here,}

\mathsf{a \ = \ 1, \ b \ = \ 0 \ and \ c \ = \ -49}

\mathsf{Now,}

\mathsf{Sum \ of \ zeroes \ :-}

 = \alpha + \beta
= \mathsf{7 + (-7) \ = \ 0}

\mathsf{Also,}

\mathsf{Sum \ of \ zeroes \ :-}

 = \frac{ - b}{a} \\ \\ = \frac{ - (0)}{1} = 0

\mathsf{Product \ of \ zeroes \ :-}

 = \alpha \beta
= \mathsf{(7)(-7) \ = \ -49}

\mathsf{Also,}

\mathsf{Product \ of \ zeroes \ :-}

 = \frac{c}{a} \\ \\ = \frac{ - 49}{1} = - 49

\huge\mathbb{Hope \ this \ helps.}

aliyapuda: can you please solve my all questions Bec I want to complete my hw
aliyapuda: plzzz
aliyapuda: hyyyy
Similar questions