Find the zeros of polynomial x³-15x²+71x-105 given that the zeros are in a.p
Answers
Answered by
39
mana ki vo zeroes (a-d),a and (a+d) hai
sum of zeroes = -b/a
a-d+a+a+d = 15
3a =15
a= 5
product of zeroes =-d/a
(a-d)(a+d)a=105
a^2-d^2=105/5
25-d^2=21
4 =d^2
d =2
a-d =5-2=3
a=5
a+d=5+2=7
sum of zeroes = -b/a
a-d+a+a+d = 15
3a =15
a= 5
product of zeroes =-d/a
(a-d)(a+d)a=105
a^2-d^2=105/5
25-d^2=21
4 =d^2
d =2
a-d =5-2=3
a=5
a+d=5+2=7
Answered by
22
Hey there
Let x = a -d , y = a , and z = a +d , where x y z are the roots of the polynomial respectively
f ( x ) = x ³ - 15x ² +71x -105
∴ x + y + z = -( -15 ) = 15
⇒ ( a - d ) + a ( a + d ) = 15
⇒ 3a = 15 = 5
and xyz = - ( -105 ) = 105
⇒ ( a-d ) a ( a+d ) = 105
⇒ a ( a² -d² ) = 105 [ since ( a+d) ( a -d ) = a²-d²]
⇒5 [ 5² - d² ] = 105
25 - d² = 21
-d² = 21 -25
-d² = -4 =
d = ± 2
CASE -I :- when a = 5 and d = -2 then
( a - d ) , a , ( a + d )
= 5 + 2 , 5 , 5 -2
= 7 , 5 , 3
CASE II :- when a = 5 and d = 2
then,
5 -2 , 5 , 5+2
=3 , 5 , 7
Hence the three zeroes are 7 , 5 , 3 or 3 ,5 ,7
For your more practice I I'm giving ya a link you can do practise by that , which is solved by me
https://brainly.in/question/3513422?utm_source=android&utm_medium=share&utm_campaign=question
Hope this helps ya ☺
Let x = a -d , y = a , and z = a +d , where x y z are the roots of the polynomial respectively
f ( x ) = x ³ - 15x ² +71x -105
∴ x + y + z = -( -15 ) = 15
⇒ ( a - d ) + a ( a + d ) = 15
⇒ 3a = 15 = 5
and xyz = - ( -105 ) = 105
⇒ ( a-d ) a ( a+d ) = 105
⇒ a ( a² -d² ) = 105 [ since ( a+d) ( a -d ) = a²-d²]
⇒5 [ 5² - d² ] = 105
25 - d² = 21
-d² = 21 -25
-d² = -4 =
d = ± 2
CASE -I :- when a = 5 and d = -2 then
( a - d ) , a , ( a + d )
= 5 + 2 , 5 , 5 -2
= 7 , 5 , 3
CASE II :- when a = 5 and d = 2
then,
5 -2 , 5 , 5+2
=3 , 5 , 7
Hence the three zeroes are 7 , 5 , 3 or 3 ,5 ,7
For your more practice I I'm giving ya a link you can do practise by that , which is solved by me
https://brainly.in/question/3513422?utm_source=android&utm_medium=share&utm_campaign=question
Hope this helps ya ☺
TheAishtonsageAlvie:
:)
Similar questions