Math, asked by sushmapoonia60, 8 months ago

find the zeros of quadratic polynomial 3 x square - 4 x minus 7 and also verify the relationship between zeroes and its coefficients​

Answers

Answered by SujalSirimilla
2

Answer:

WE ARE GIVEN A QUADRATIC POLYNOMIAL:

⇒3x²-4x-7=0

It is in the form ax²+bx+c=0

Here, a=3; b= -4; c= -7.

Factorise it.

⇒3x²-7x+3x-7=0

⇒x(3x-7)+1(3x-7)=0

⇒(3x-7)(x+1)=0

Now, equate it to 0.

x= -1 OR x= 7/3

Now, here:

Sum of roots = -b/a

-1+7/3= -(-4/3)

4/3=4/3.

Product of roots = c/a

-1×7/3 = -7/3

-7/3=-7/3.

{\huge{\mathfrak{\underbrace{\blue{HOPE \:\: THIS \:\: HELPS \:\: :D}}}

Answered by himavarshini5783
2

Answer:

Given Quadratic polynomial

Factorisation :

3 {x}^{2} - 4x - 7 = 0 \\ 3 {x}^{2} - 7x  + 3x - 7 = 0 \\ x(3x - 7) + 1(3x - 7) = 0 \\ (3x - 7)(x + 1) = 0 \\ 3x - 7 = 0 \:  \: or \:  \: x + 1 = 0 \\ x =  \frac{7}{3} \:  \: or \:  \: x =  - 1 \\  \alpha= - 1 \:  \: and  \:  \:  \beta= \frac{7}{3}

sum \: of \: the \: zeroes \: \\   \alpha  +  \beta =  - 1 +  \frac{7}{3} \\  \alpha  +  \beta  =  \frac{4}{3} \\  \\ product \: of \: zeroes \\  \alpha  \beta  = ( - 1)( \frac{7}{3}) \\  \alpha  \beta  =  -  \frac{7}{3}

coefficients \\ a = 3 \: \:  \: b =  - 4 \:  \:  \: c =  - 7 \\ zeroes \\  \alpha  =  - 1 \:  \:  \:  \beta  =  \frac{7}{3} \\  \\  \alpha  +  \beta  =  -  \frac{b}{a} =  \frac{4}{3} \\  \alpha  \beta  =  \frac{c}{a} =  -  \frac{7}{3}  \\

Hence verified

Similar questions