Math, asked by ibrahimpasha6003, 3 months ago

Find the zeros of quadratic Polynomial 4√3x^2+5x-2√3 .Also verify the relationship between zeros and its coefficients​

Answers

Answered by Aryan0123
3

Given Polynomial → 4√3x² + 5x - 2√3

\\

For finding zeros of any polynomial first, factorize the given polynomial by splitting the middle term.

So, for this find 2 numbers such that

  • Their product is (4√3)(5√3) = 24
  • Their sum is 5

\\

Those 2 numbers which satisfy the above condition are 8 and 3.

\\

   4√3x² + 5x - 2√3 = 0

⇒ 4√3x² + 8x - 3x - 2√3 = 0

⇒ 4x(√3x + 2) - √3(√3x + 2) = 0

⇒ (4x - √3) (√3x + 2) = 0

\therefore \sf{x=\dfrac{\sqrt{3} }{4} \quad  OR \quad  x = \dfrac{-2}{\sqrt{3}}}\\\\

\rm{Let \: \alpha \: be \: \dfrac{\sqrt{3}}{4} \: and \: \beta \: be \: \dfrac{-2}{\sqrt{3}}}\\\\

\bf{\underline{Sum \: of \: zeroes:}}\\

\red{\sf{\alpha + \beta = \dfrac{-b}{a}}}\\\\

\to \: \sf{\dfrac{\sqrt{3}}{4} - \dfrac{2}{\sqrt{3}}= \dfrac{-5}{4 \sqrt{3}}}\\\\

\to \: \sf{\dfrac{3-8}{4\sqrt{3}}= \dfrac{-5}{4\sqrt{3}}}\\\\

\to \: \sf{\dfrac{-5}{4\sqrt{3}}=\dfrac{-5}{4\sqrt{3}}}\\\\

LHS = RHS

\\\bf{\underline{Product \: of \: zeros:}}\\

\sf{\pink{\alpha \beta = \dfrac{c}{a}}}\\\\

\to \: \sf{\dfrac{\sqrt{3}}{4}\times \dfrac{-2}{\sqrt{3}}=\dfrac{-2\sqrt{3}}{4\sqrt{3}}}\\\\

\to{\dfrac{-2}{4}=\dfrac{-2}{4}}

LHS = RHS

Hence verified

Similar questions