Math, asked by Yashgandhi2016, 11 months ago

find the zeros of quadratic polynomial and verify the relationship between zeroes and coefficients p(x)=t^2 +7t+12​

Answers

Answered by vikasreddy1809
1

Answer:

Step-by-step explanation:

Attachments:
Answered by Anonymous
7

⠀⠀⠀\huge\underline{ \mathrm{ \red{QueS{\pink{tiOn}}}}}

find the zeros of quadratic polynomial and verify the relationship between zeroes and coefficients p(x)=t^2 +7t+12

━━━━━━━━━━━━━━━━━━━━━━━━━

  \large\underline{ \underline{ \red{ \bold {Answer}}}}

verified

⠀⠀⠀\huge{ \underline{ \purple{ \bold{ \underline{ \mathrm{ExPlanA{\green{TiOn }}}}}}}}

\bf{ \color{purple}{Given}\begin{cases}\textsf{p(x)= t square +7t+12}\end{cases}}

  \large\underline{ \underline{ \red{ \bold {To \:Find}}}}

we need to find the zeroes of the given polynomial and relationship between the zeroes and coefficients.

⠀⠀⠀⠀⠀\huge\underline{ \underline{ \orange{ \bold{sOluTiOn}}}}

⠀⠀⠀⠀⠀

 \underbrace{ \color{red}{ \bf{by \: splitting \: the\: middle\:term}}}

➩⠀⠀⠀⠀⠀\bf\:{t}^{2}+7t+12

➩⠀⠀⠀⠀⠀\bf\:{t}^{2}+4t+3t+12

➩⠀⠀⠀⠀⠀\bf\:t(t+3)+3(t+4)

➩⠀⠀⠀⠀⠀\bf\:(t+3)(t+4)

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀{\boxed{\color{red}{\bf{t=-3\:and\:t=-4}}}}

  \bf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  let  \:  \\ \: \alpha  =  - 3 \\   \bf\beta  =  - 4

Relationship between zeroes and coefficients:-

compare \bf\:{t}^{2}+7t+12=0 with \bf\:a{x}^{2}+bx+c=0

  • a = 1

  • b = 7

  • c = 12

 {\underline{\boxed{ \color{green} \bf{sum \: of \: zeroes =  \frac{coefficient \: of \: x}{coefficient \: of \:  {x}^{2} } }}}}

 \bf \alpha  +  \beta  =  \frac{ - b}{a}

➩⠀⠀⠀⠀⠀ \bf -3 +  (-4)  =  \frac{ -7}{1}

➩⠀⠀⠀⠀⠀ \bf -3-4  =  -7

➩⠀⠀⠀⠀⠀ \bf -7=  -7

⠀⠀⠀⠀⠀⠀⠀⠀ {\underline{\boxed{\purple {\bf{LHS=RHS } }}}}

Hence verified.

\small {\underline{\boxed{ \color{green} \bf{Product \: of \: zeroes =  \frac{constant \:term}{coefficient \: of \:  {x}^{2} } }}}}

 \bf \alpha  \times  \beta  =  \frac{ c}{a}

➩⠀⠀⠀⠀⠀ \bf -3\times-4 =  \frac{12}{1}

➩⠀⠀⠀⠀⠀ \bf 12  =  12

⠀⠀⠀⠀⠀⠀⠀⠀ {\underline{\boxed{\purple {\bf{LHS=RHS } }}}}

Hence verified.

━━━━━━━━━━━━━━━━━━━━━━━━━

Similar questions