Math, asked by anilkr5553, 7 months ago

find the zeros of quadratic polynomial P(x)=x²-x-72 and find the relationship between zeros and its coefficient ​

Answers

Answered by EnchantedGirl
93

AnswEr:-

Given:-

  • P(x)=x²-x-72

To find:-

  • Zeroes of the polynomial & the relationship btw zeroes and co-efficients.

Solution:-

Given , P(x) = x²-x-72

⇒ x²-x-72=0

⇒ x²-9x+8x -72 =0

⇒ x(x-9) +8(x-9)  =0

⇒ (x+8)(x-9)=0

⇒ x+8 = 0   (OR)  x-9 = 0

⇒ x = -8 , 9

Zeroes of polynomial are -8 ,9.

Relationship btw zeroes and co-efficients:-

If ax²+bx+c = 0 is a polynomial , where a≠0 & αβ are zeroes of the polynomial ,

❥ αβ = c/a

❥ α+β = -b/a

According to question :

➾ αβ = c/a

⇒ (9)(-8) = -72/1

⇒ - 72 = -72

⇒ 1 = 1 .

➾ α + β = -b/a

⇒ 9 + (-8) = -(-1)/1

⇒ 1 = 1 .

Hence verified!

____________________

Answered by Anonymous
91

 \sf \underline{Answer:-}

 \tt \: Let \:  \: p(x) =  {x}^{2}  - x - 72

 \tt \: Zero \:  \: of \:  \: the \:  \: polynomial \:  \: is \:  \: the \:  \: value \:  \: of \:  \: x \:  \: where \:  \: p(x) = 0

 \tt \: Putting \: p(x) = 0

 \bf \:  {x}^{2}  - x - 72 = 0

 \tt \: By \:  \: splitting \:  \: the \:  \: middle \:  \: term \:

 \bf \:  {x}^{2}  - 9x + 8x - 72 = 0

 \bf \: x(x - 9) + 8(x - 9) = 0

 \bf \: (x + 8)(x - 9) = 0

 \tt \: So , \: x =  - 8 \: ,9

Therefore,

 \bf \:  \alpha  =  - 2 \:  \: and \:  \:  \beta  =  - 5 \:  \: are \:  \: the \:  \: zeroes \:  \: of \:  \: the \:  \: polynomial \:

 \bf \: p(x) =  {x}^{2}  - x - 72

 \bf \: Comparing \:  \: with \:  \:  {ax}^{2}  + bx + c \:

So,

  • a = 1
  • b = -1
  • c = -72

we have to verify,

 \bf \: Sum \:  \: of \:  \: zeroes \:  \:  =  \:  \frac{coefficient \:  \: of \:  \: x \: }{coefficient \:  \: of \:  \:  {x}^{2} }  \\

 \sf \: i.e. \:  \alpha  +  \beta  =  \frac{ - b}{a}  \\

 \bf \: LHS \:  =  \alpha  +  \beta

 \bf \:  = ( - 8) + 9 \\  \\

 \bf \:  = 1

 \bf \: RHS =  \frac{ - b}{a}  \\

 \bf \:  =   \frac{ - ( - 1)}{1}  \\

 \bf \:  = 1

LHS = RHS

now,

 \bf \: Product \:  \: of \:  \: zeroes \:  \:  =  \:  \frac{constant \:  \: term}{coefficient \:  \: of \:  \:  {x}^{2} }  \\

 \sf \: i.e. \:  \alpha  \beta  =  \frac{c}{a}  \\

 \bf \: LHS \:  =  \alpha  \beta

 \bf \:  = ( - 8)(9)

 \bf \:  =  - 72

 \bf \: RHS =  \frac{c}{a}  \\

 \bf \:  =  \frac{ - 72}{1}  \\

 \bf \: =   - 72

LHS = RHS

 \bf {\fbox{ \red{ </strong><strong>♡</strong><strong>Hence \:  \: </strong><strong>Verified</strong><strong> </strong><strong>♡</strong><strong>}}}

Similar questions