Math, asked by Anonymous, 4 months ago

find the zeros of quadratic polynomial 3x {?}^{2} { - 5x} - 1{2}

Answers

Answered by Anonymous
14

Answer:

First write the given equation correctly

\qquad\quad {:}\dashrightarrow\sf 3x^2-5x-12=0

Now Factorise

\qquad\quad {:}\dashrightarrow\sf 3x^2+9x-4x-12=0

\qquad\quad {:}\dashrightarrow\sf 3x (x+3)-4 (x+3)=0

\qquad\quad {:}\dashrightarrow\sf (x+3)(3x-4)=0

\qquad\quad {:}\dashrightarrow\sf (x+3)=0\quad or\quad (3x-4)=0

\qquad\quad {:}\dashrightarrow\sf x=-3\quad or\quad=x={\dfrac{4}{3}}

\therefore{\underline{\boxed{\sf x=-3\:or\;{\dfrac {4}{3}}}}}

Answered by MrHyper
5

\huge\bf{{\color{navy}{a}}{\color{indigo}{n}}{\color{blue}{s}}{\blue{w}}{\color{skyblue}{e}}{\color{lightblue}{r}}}

\small{ }

\large\bf{To~find:}

The zeros of the quadratic polynomial :

 \bf 3x^{2}  - 5x - 12=0

By factorising it by ‛Splitting the middle term method’ we get :

 \bf s =  - 5 \:  \:  \:  \:  \:  \:  \: p =  - 36  \\  \bf ( - 9 \:  \:  \: 4) \\  \bf (3x^{2}  - 9x) + (4x - 12)  = 0\\  \bf [3x(x - 3)] + [4(x - 3)] = 0 \\  \bf (3x  + 4)(x - 3) = 0 \\  \bf 3x + 4 = 0 \:   \:  \:  \: \:  \: or \:  \:  \:  \:  \:  \: x - 3 = 0 \\  \\  \bf  x = \frac{ - 4}{3}  \:  \:   \:  \:  \:  \: \: or \:  \:   \:  \:  \:  \: \:  x = 3

\small{ }

\huge\bf{{\color{navy}{Hope}}~{\color{blue}{it}}~{\blue{helps..!!}}}

Similar questions