Math, asked by 2dots, 1 month ago

Find the zeros of quadratic polynomial:
4x^{2} -6 -8x

Attachments:

Answers

Answered by tyrbylent
2

Answer:

Step-by-step explanation:

The zeroes of given polynomial are

x_{1} = 1 - \frac{\sqrt{10} }{2}

x_{2} = 1 + \frac{\sqrt{10} }{2}

Attachments:
Answered by Anonymous
9

Step-by-step explanation:

 \\

Method l :

Let p(x) = 4x² - 6 - 8x

Now,

4x² - 6 - 8x

= 4x² - 8x - 6

= (2x)² - 2.2x.4/2 + (4/2)² - (4/2)² - 6

= (2x - 4/2)² - (4/2)² - 6

= ( 2x - 2 )² - 2² - 6

= ( 2x - 2 )² - 4 - 6

= ( 2x - 2 )² - 10

To find the zeroes of p(x), we write p(x) = 0

\bold{ \tt{ {(2x - 2)}^{2}  - 10= 0}} \\ \\  \bold{ \tt{ =  >  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  (2x - 2)^{2} = 10}}  \:  \:  \:  \:  \:  \\ \\   \bold{ \tt{ \:  \:  \:  \:  \:  =  >  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \: \:  \: \: 2x - 2=  { \pm}\sqrt{10} }}  \:  \:  \:   \\  \\  \bold {\tt{ =  >  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: 2x =   2\pm\sqrt{10}  }} \\  \\  \bold {\tt{  \:  =  >  \:  \:  \: \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: x =   \frac{ 2 \pm\sqrt{10} }{2} }} \\   \\ \bold{ \tt{  \:  \:  \:  \:  \:  \: \:  \:  \therefore \: x \:  =  \frac{ 2 + \sqrt{10}  }{2} , \:  \frac{ 2- \sqrt{10} }{2} }}

Therefore, the zeroes of the quadratic polynomial 4x² - 6 - 8x are ( 2 + 10 )/2 and ( 2 - 10 )/2 .

 \\  \\  \\

Method ll :

Comparing 4x² - 6 - 8x to ax² + bx + c , we get

a = 4

b = -8

c = -6

D = b² - 4 ac

= (-8)² - 4 × 4 × (-6)

= 64 + 96

= 160

Using quadratic formula,

  \bold{\tt{x =  \frac{  - b \pm\sqrt{D} }{2a}  }} \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \: \\  \\  \bold{\tt{ =  \frac{ - ( - 8) \pm \sqrt{160} }{2 \times 4}}}  \\ \\  \bold{\tt{  =  \frac{ 8 \pm4 \sqrt{10} }{2 \times 4}}}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\   \\  \bold{\tt{ = \frac{ \cancel4(  2 \pm \sqrt{10}) }{2 \times \cancel 4} }}  \:  \:  \:  \:  \:  \: \\ \\   \bold{\tt{ \:  \:  \:  \:  \:  \:  \:  \:  =  \frac{ 2 + \sqrt{10} }{2}, \frac{2 -  \sqrt{10} }{2} }}

Therefore, the zeroes of the quadratic polynomial are ( 2 + 10 )/2 and ( 2 - 10 )/2 .

Similar questions