Math, asked by bala78, 1 year ago

find the zeros of the biquadratic polynomial x^4-2x^3+4x^2+7x-5

Answers

Answered by SrijanShrivastava
1

 {x}^{4}  - 2 {x}^{3}  + 4 {x}^{2}  + 7x - 5 = 0

The above quartic do not have rational solutions.

so

Using the Quartic Formula:

 \\  x_{1,2} =  \frac{1 \pm \sqrt{ \frac{  - 5}{3} +  \frac{1}{3}  \sqrt[3]{ \frac{2855 + 3 \sqrt{905673} }{2} } +  \frac{1}{3}   \sqrt[3]{ \frac{2855 - 3 \sqrt{905673} }{2} }  }  \pm i  \sqrt{\sqrt{ \frac{1}{\frac{ - 5}{3} +  \frac{1}{3}  \sqrt[3]{ \frac{2855 + 3 \sqrt{905673} }{2} } +  \frac{1}{3}   \sqrt[3]{ \frac{2855 - 3 \sqrt{905673} }{2} } } }} \sqrt{  5\sqrt{\frac{ -  5}{3}  -   \frac{1}{3}  \sqrt[3]{ \frac{2855 + 3 \sqrt{905673} }{2} }  -   \frac{1}{3}   \sqrt[3]{ \frac{2855 - 3 \sqrt{905673} }{2} }   }+ (\frac{ - 5}{3} +  \frac{1}{3}  \sqrt[3]{ \frac{2855 + 3 \sqrt{905673} }{2} } +  \frac{1}{3}   \sqrt[3]{ \frac{2855 - 3 \sqrt{905673} }{2} }  )\sqrt{\frac{  - 5}{3} +  \frac{1}{3}  \sqrt[3]{ \frac{2855 + 3 \sqrt{905673} }{2} } +  \frac{1}{3}   \sqrt[3]{ \frac{2855 - 3 \sqrt{905673} }{2} } }  \pm20}   }{2}

 \\  x_{3,4} =  \frac{1 \pm \sqrt{ \frac{ -  5}{3} +  \frac{1}{3}  \sqrt[3]{ \frac{2855 + 3 \sqrt{905673} }{2} } +  \frac{1}{3}   \sqrt[3]{ \frac{2855 - 3 \sqrt{905673} }{2} }  }  \mp i \sqrt[4]{ \frac{1}{\frac{  -  5}{3} +  \frac{1}{3}  \sqrt[3]{ \frac{2855 + 3 \sqrt{905673} }{2} } +  \frac{1}{3}   \sqrt[3]{ \frac{2855 - 3 \sqrt{905673} }{2} } } } \sqrt{  \frac{ -  5}{3}  -   \frac{1}{3}  \sqrt[3]{ \frac{2855 + 3 \sqrt{905673} }{2} }  -   \frac{1}{3}   \sqrt[3]{ \frac{2855 - 3 \sqrt{905673} }{2} }   + (\frac{   - 5}{3} +  \frac{1}{3}  \sqrt[3]{ \frac{2855 + 3 \sqrt{905673} }{2} } +  \frac{1}{3}   \sqrt[3]{ \frac{2855 - 3 \sqrt{905673} }{2} }  )\sqrt{\frac{  - 5}{3} +  \frac{1}{3}  \sqrt[3]{ \frac{2855 + 3 \sqrt{905673} }{2} } +  \frac{1}{3}   \sqrt[3]{ \frac{2855 - 3 \sqrt{905673} }{2} } }  \pm20}   }{2}

Slide to see the full length answer→→

I couldn't really make it look more simplified than this.

After approximation

x₁ ≈ − 1.3040

x₂ ≈ 0.56761

x₃ ≈ 1.3628 – 2.2098i

x₄ ≈ 1.3682 + 2.2098i

where, i = √(–1)

Similar questions