Math, asked by mayanksahu60, 11 months ago

find the zeros of the cubic polynomial 3 x cube minus 5 x square - 11 x minus 3​

Answers

Answered by ashishks1912
5

GIVEN :

Find the zeroes of the cubic polynomial 3 x^3-5 x^2 - 11 x -3

TO FIND :

The zeroes of the cubic polynomial 3 x^3-5 x^2 - 11 x -3

SOLUTION :

Given that the cubic polynomial is 3 x^3-5 x^2 - 11 x -3

Since the given polynomial is cubic hence it must have three zeroes.

By using the Synthetic Division method we can find the zeroes

-1 |  3     -5      -11      -3

     0      -3       8       3

  _________________

    3       -8       -3       0

⇒  x+1 is a factor of the given cubic polynomial 3 x^3-5 x^2 - 11 x -3

x+1=0

∴ x=-1 is a zero of the cubic polynomial 3 x^3-5 x^2 - 11 x -3

Now we have the quadratic equation

3x^2-8x-3=0

3x^2-9x+x-3=0

3x(x-3)+1(x-3)=0

(3x+1)(x-3)=0

3x+1=0 or x-3=0

x=-\frac{1}{3} and x=3 are the other zeroes of the cubic polynomial 3 x^3-5 x^2 - 11 x -3

∴ x=-1, x=-\frac{1}{3} and x=3 are the three zeroes of the cubic polynomial 3 x^3-5 x^2 - 11 x -3

Answered by hukam0685
5

Step-by-step explanation:

Given that:

find the zeros of the cubic polynomial 3 x cube minus 5 x square - 11 x minus 3

To find: Zeroes of cubic polynomial

Solution:

Given cubic polynomial is

3 {x}^{3}  - 5 {x}^{2}  - 11x  -  3 \\  \\

Its one zero can be easily find using hit and trial method.

Put x= -1

 = 3( { - 1)}^{3}  - 5( { - 1)}^{2}  - 11( - 1) - 3 \\  \\  =  - 3 - 5 + 11 - 3 \\  \\ =   - 11 + 11 \\  \\  = 0 \\  \\

On putting x=-1 cubic polynomial becomes zero,so

x= -1 is a zero of this polynomial.

Thus,

(x+1) is a factor.

We know that factor divides polynomial completely,So

x + 1) \: 3 {x}^{3}  - 5 {x}^{2}  - 11x  -  3 \: (3 {x}^{2}  - 8x - 3 \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: 3 {x}^{3}  + 3 {x}^{2}  \\  \:  \:  \:  \:  \:  \:  \:  \: ( - ) \:  \:  \:  \:  \: ( - ) \\  \:  \:  \:  \:  \:  \:  -  -  -  -  -  -  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  - 8 {x}^{2}  - 11x \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  - 8 {x}^{2}  - 8x \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \: ( + )  \:  \: \:  \:  \: ( + ) \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  -  -  -  -  -  -  \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  - 3x - 3 \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  - 3x - 3 \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \: ( + ) \:  \:  \: ( + ) \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  -  -  -  -  -  -  \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: 0 \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  -  -  -  -  -  -

Thus,factorize the quotient polynomial to find other two zeros of cubic polynomial

\bold{3 {x}^{2}  - 8x - 3 = 0} \\  \\ 3 {x}^{2}  - 9x + x - 3 = 0 \\  \\ 3x(x - 3) + 1(x - 3) = 0 \\  \\ (3x + 1)(x - 3) = 0 \\  \\ 3x + 1 = 0 \\  \\ x =  \frac{ - 1}{3}  \\  \\ or \\  \\ (x - 3) = 0 \\  \\ x = 3 \\  \\

Thus,

All the three Zeroes are

x= -1, 3, -1/3

Hope it helps you.

Similar questions