Math, asked by ravikumar2000, 10 months ago

Find the Zeros of the Cubic Polynomial using Trial and Error method.
(i) f(x) = x³ - 3x² + 5x - 3
(ii) f(x) = 2x³ + x² + 5x - 2​

Answers

Answered by abhinavku1247
0

I think you should first apply hidden trial and than divide it after which you have to solve the bracket. After which you will get answer.

Answered by bhavani2000life
3

Answer:

(i) f(x) = x3 = 3x2 +5x – 3

=  1 – 3 + 5 – 3

= 6 – 6

= 0

∴ (x-1) is a factor of f(x) = x3 – 3x2 + 5x – 3.

x – 1 ) x3 – 3x2 + 5x – 3 ( x2 – 2x + 3

           x3 – x2

------------------------------------------------------

                  -2x2 + 5x

                  -2x2 + 2x

------------------------------------------------------

                                +3x - 3

                                 -3x + 3

-------------------------------------------------------

                                       0

= x2 – 2x + 3

= x = -b + √d/2a

= - (-2) + √6/2(1)

= 2 + 4/2, 2 - 4/2

= 6/2, -2/2

= 3, -1

(ii) f(x) = 2x³ + x² + 5x - 2

= x = -2 => f (-2)³ + (-2)² - 5 (-2) + 2

= 2 (-8) + 4 + 10 + 2

= -16 + 14 + 2

= -16 + 16

= 0

∴ (x + 2) is a factor of f(x) = 2x³ + x² + 5x - 2

x + 2 )  2x³ + x² + 5x - 2 ( 2x² - 3x + 1

           2x³ + 4x²

----------------------------------------------------

                          -3x² - 5x

                          -3x² - 6x

----------------------------------------------------

                                      x - 2

                                      x - 2

----------------------------------------------------

                                         0

----------------------------------------------------

= 2x² - 3x + 1

= 2x² - 2x - x + 1

= 2x (x - 1) -1 (x - 1)

= (2x - 1) (x - 1) = 0

= (x - 1) = 0

= x = 1

= (2x - 1) = 0

= 2x = 1

= x = 1/2

∴ 1/2, 1 , -2 are the Zeros.

Similar questions