Math, asked by arvindrajput265741, 9 months ago

find the zeros of the equation p(x) and verify the relationship between the zeros and the coefficient p(x)=x^2-10x+16​

Answers

Answered by vishals3k
1

Step-by-step explanation:

x {}^{2}  - 10x + 16 \\ x {}^{2}  - 8x - 2x + 16 \\ x(x - 8) - 2(x - 8) \\ (x - 8)(x - 2) \\ x = 8 =  \alpha  \\ x = 2 =  \beta  \\

 \alpha +   \beta  =  - b \div a =  - 10 \div 1 =  - 10

 \alpha  \beta  = c \div a = 16 \div 1 = 16

Answered by ItzShinyQueenn
4

\purple {\sf{\underline {Solution:-}}}

According to the question,

 {x}^{2} - 10x + 16    = 0

⟹  {x}^{2}  - 8x - 2x + 16 = 0

⟹  x( x - 8) - 2(x - 8) = 0

⟹  (x - 8)(x - 2) = 0

⟹x - 8 = 0 \:  \: or \:  \: x - 2 = 0

⟹x = 8 \:  \: or \:  \: x = 2

Now,

p(x) =  {x}^{2}  - 10x + 16

p(8) =  {8}^{2}  - 10 \times 8 + 16

 \:  \:  \:  \:  \:  \:  \:  \:  \:  = 64 - 80 + 16

 \:  \:  \:  \:  \:  \:  \:  \:  \:  = 80 - 80

 \:  \:  \:  \:  \:  \:  \:  \:  \:  = 0

And,

p(x) =  {x}^{2}  - 10x + 16

p(2) =  {2}^{2}  - 10 \times 2 + 16

 \:  \:  \:  \:  \:  \:  \:  \:  \:  = 4 - 20 + 16

 \:  \:  \:  \:  \:  \:  \:  \:  \:  = 20 - 20

 \:  \:  \:  \:  \:  \:  \:  \:  \:  = 0

 \\

  • \green {\sf {Hence, x = 8 \:\:or\:\: x = 2}}

____________________________

Similar questions