Math, asked by manushivapura6, 1 year ago

find the zeros of the following polynomial 5 root 5 x square + 30 X + 8 root 5​

Answers

Answered by BrainlyPopularman
1

Answer:

5 \sqrt{5}  {x}^{2}  + 30x + 8 \sqrt{5}  = 0 \\  \\  =  > 5 {x}^{2}  + 6 \sqrt{5} x + 8 = 0 \\  \\  =  > 5 {x}^{2}  + 4 \sqrt{5} x + 2 \sqrt{5} x + 8 = 0 \\  \\  =  >  \sqrt{5} x( \sqrt{5}  x+ 4) + 2( \sqrt{5} x + 4) = 0 \\  \\  =  > ( \sqrt{5} x + 2)( \sqrt{5} x + 4) = 0 \\  \\  =  > x =  \frac{ - 2}{ \sqrt{5} } \: ,\:  -  \frac{4}{ \sqrt{5} }

HOPE YOU LIKE IT...

Similar questions