Math, asked by sidharthkumar161005, 10 months ago

find the zeros of the following quadratic polynomial and verify the relationship between the zeros and the coefficients of ___________

t^2-15​

Answers

Answered by amitkumar44481
26

Solutions :

We have, Expression.

 \tt :  \implies {t}^{2}  - 15

Let's To Find Zeros.

→ t² - 15 = 0.

→ t = ±√15.

Other Methods.

 \tt \dagger \:  \:  \:  \:  \: x  =  \dfrac{ - b \pm \sqrt{ {b}^{2} - 4ac }  }{2a}

Where as,

  • a= 1.
  • b = 0.
  • c = 15.

 \tt  : \implies x =  \dfrac{  - 0 \pm\sqrt{ {0}^{2}   - 4 \times 1 \times 15}  }{2}

 \tt  : \implies x =  \dfrac{   \pm \sqrt{60}   }{2}

 \tt  : \implies x =  \dfrac{   \pm2 \sqrt{15} }{2}

 \tt  : \implies x =  \pm \sqrt{15}

Let's Verify.

  • Let Zeros be a and b.

Sum of Zeros.

→ a + b = - b / a.

→ √15 - √15 = 0.

→ 0 = 0.

★ Product of Zeros.

→ a * b = c / a

→ √15 * - √15 = - 15.

→ - 15 = -15.

Verify

Similar questions