Math, asked by harishsinhmar7118, 1 month ago

Find the zeros of the following quadratic polynomial and verify the relationship between the zeros and the cooperation 3 x square minus x minus 4

Answers

Answered by Anonymous
48

Answer:

Given :-

  • 3x² - x - 4

To Find :-

  • What is the zeros of the quadratic polynomial and verify the relationship between the zeroes and co-efficient.

Solution :-

Given Equation :

\bigstar\: \: \bf{3x^2 - x - 4}

Let,

\implies\sf<strong> </strong>p(x) =\: 3x^2 - x - 4

Zero of the polynomial is the value of x, where p(x) = 0

By putting p(x) = 0, we get :

\implies \bf{3x^2 - x - 4 =\: 0}

\implies \sf 3x^2 - (4 - 3)x - 4 =\: 0

\implies \sf 3x^2 - 4x + 3x - 4 =\: 0\: \: \bigg\lgroup \small\bold{By\: splitting\: middle\: term}\bigg\rgroup\\

\implies \sf x(3x - 4) + 1(3x - 4) =\: 0

\implies \sf (3x - 4)(x + 1) =\: 0

\longrightarrow \bf 3x - 4 =\: 0

\longrightarrow \sf 3x =\: 4

\longrightarrow \sf \bold{\red{x =\: \dfrac{4}{3}}}

\longrightarrow \bf x + 1 =\: 0

\longrightarrow \sf \bold{\red{x =\: - 1}}

{\small{\bold{\underline{\therefore\: The\: zeroes\: of\: quadratic\: polynomial\: is\: \dfrac{4}{3}\: and\: - 1\: respectively\: .}}}}\\

Hence, we get :

  • α = 4/3
  • β = - 1

Now, we have to verify the relationship between the zeroes and co-efficient :

Given Equation :

\bigstar\: \: \bf{3x^2 - x - 4}

By comparing with ax² + bx + c we get,

  • a = 3
  • b = - 1
  • c = - 4

Sum Of Zeroes :

\clubsuit Sum of Zeroes Formula :

\mapsto \sf\boxed{\bold{\pink{Sum\: of\: Zeroes\: (\alpha + \beta) =\: \dfrac{- b}{a}}}}\\

We have :

  • a = 3
  • b = - 1

According to the question by using the formula we get,

\longrightarrow \sf \dfrac{4}{3} + (- 1) =\: \dfrac{- (- 1)}{3}

\longrightarrow \sf \dfrac{4}{3} - 1 =\: \dfrac{1}{3}

\longrightarrow \sf \dfrac{4 - 3}{3} =\: \dfrac{1}{3}

\longrightarrow \sf\bold{\purple{\dfrac{1}{3} =\: \dfrac{1}{3}}}

Hence, Verified.

Product Of Zeroes :

\clubsuit Product Of Zeroes Formula :

\mapsto \sf\boxed{\bold{\pink{Product\: Of\: Zeroes\: (\alpha\beta) =\: \dfrac{c}{a}}}}\\

We have :

  • a = 3
  • c = - 4

According to the question by using the formula we get,

\longrightarrow \sf \dfrac{4}{3} \times (- 1) =\: \dfrac{- 4}{3}

\longrightarrow \sf\bold{\purple{ \dfrac{- 4}{3} =\: \dfrac{- 4}{3}}}

Hence, Verified.

Answered by PerfectHarmony
18

Step-by-step explanation:

let \: f (x) = 3x {}^{2}  - x - 4

 = x(3x - 4) + 1(3x - 4)

 = (3x - 4)(x + 1)

to \:  find \:  the \:  zeroes, Let f(x) = 0

(3x - 4) = 0 \: or \: (x + 1) = 0

\huge\underline\mathtt\red{x =  \frac{4}{3} \:  or \: x =  - 1}

So the zeros of f(x) are 4/3 or -1

Again,

Sum of zeros=

 \frac{4}{3}  + ( - 1) =   \frac{1}{3}  =  \frac{ - b}{a}

Product of zeros=

 \frac{4}{3} \times ( - 1) =  \frac{ - 4}{3}  =  \frac{c}{a}

Similar questions