Math, asked by dishamalhan325, 2 days ago

find the zeros of the following quadratic polynomial and verify the relation between the zeros and the coefficient

2x^2+5x+2
​​

Answers

Answered by Mysteryboy01
2

 =  {2x}^{2}  + 5x + 2

 =  {2x}^{2}  + (4 + 1)x + 2

 = 2 {x}^{2}  + 4x + x + 2

 = 2x(x + 2) + 1(x + 2)

 = (2x + 1)(x + 2)

x + 2 = 0

x =  - 2

2x + 1 = 0

2x = 1

x =  \frac{1}{2}

sum \:  \: of \:  \: zeros \: :  - 2 +  \frac{1}{2}

 =  \frac{ - 3}{2}

product \:  \: of \: zeros: - 2 \times  \frac{1}{2}

 =  \frac{ - 2}{2}

=1

Answered by tagorbisen
1

Step-by-step explanation:

=2x

2

+5x+2

= {2x}^{2} + (4 + 1)x + 2=2x

2

+(4+1)x+2

= 2 {x}^{2} + 4x + x + 2=2x

2

+4x+x+2

= 2x(x + 2) + 1(x + 2)=2x(x+2)+1(x+2)

= (2x + 1)(x + 2)=(2x+1)(x+2)

x + 2 = 0x+2=0

x = - 2x=−2

2x + 1 = 02x+1=0

2x = 12x=1

x = \frac{1}{2}x=

2

1

sum \: \: of \: \: zeros \: : - 2 + \frac{1}{2}sumofzeros:−2+

2

1

= \frac{ - 3}{2}=

2

−3

product \: \: of \: zeros: - 2 \times \frac{1}{2}productofzeros:−2×

2

1

= \frac{ - 2}{2}=

2

−2

=1

Similar questions