Math, asked by f7profreestylers, 10 months ago

find the zeros of the following quadratic polynomials and verify the relationship between the zeros and the coefficients of x square - 36​

Answers

Answered by Anonymous
15

Solution :

\bf{\blue{\underline{\underline{\bf{Given\::}}}}}

The quadratic polynomial is x² - 36.

\bf{\blue{\underline{\underline{\bf{To\:find\::}}}}}

The zeroes and verify the relationship between the zeros and the coefficient.

\bf{\blue{\underline{\underline{\bf{Explanation\::}}}}}

We have p(x) = x² - 36.

Zero of the polynomial p(x) = 0

So;

\longrightarrow\sf{x^{2} -36=0}\\\\\longrightarrow\sf{x^{2} =36}\\\\\longrightarrow\sf{x=\pm\sqrt{36} }\\\\\longrightarrow\sf{\pink{x=\pm6}}

∴ The α = 6 and β = -6 are the zeroes of the polynomial.  

As the given quadratic polynomial as we compared with ax² + bx + c ;

  • a = 1
  • b = 0
  • c = -36

Now;

\underline{\orange{\mathcal{SUM\:OF\:THE\:ZEROES\::}}}

\longrightarrow\sf{\alpha +\beta =\dfrac{-b}{a} =\dfrac{Coeffiicient\:of\:x}{Coeffiicient\:of\:x^{2} } }\\\\\\\longrightarrow\sf{6+(-6)=\dfrac{0}{1} }\\\\\\\longrightarrow\sf{6-6=0}\\\\\\\longrightarrow\sf{\pink{0=0}}

\underline{\orange{\mathcal{PRODUCT\:OF\:THE\:ZEROES\::}}}

\longrightarrow\sf{\alpha \times \beta =\dfrac{c}{a} =\dfrac{Constant\:term}{Coeffiicient\:of\:x^{2} } }\\\\\\\longrightarrow\sf{6\times (-6)=\dfrac{-36}{1} }\\\\\\\longrightarrow\sf{\pink{-36=-36}}

Thus;

Relationship between zeroes and coefficient is verified .

Similar questions