Math, asked by pspatel4105, 10 months ago

find the zeros of the following quadratic polynomials by factorization method and verify the relation between the zeros and tne coefficients: 6x^2 + x - 12

Answers

Answered by mdazamfaizy
1

Let 6x2 - 7x-3 be p(x) =0

so,6x2 - 7x-3 =0

6x2 - (9-2) x -3

6x2 - 9x + 2x -3

(6x2 - 9x)(2x-3)

3x(2x-3) +1 (2x-3)

(3x +1) (2x -3) = 0

⇒ 3x +1 = 0

⇒ 2x -3 = 0

⇒ x =3/2

⇒ x = - 1/3

sum of zeroes = -1/3 + 3/2 =7/6 = -b/a

product of zeroes =- 1/3 * 3/2 = - 3/6 or -1/2 = c/a

Answered by RADP
5

Answer:

 = 6 {x}^{2}  + x - 12 \\    =  {6x}^{2}  + 9x - 8x - 12 \\  =  3x(2x + 3) - 4(2x + 3) \\  = (2x + 3)(3x - 4) \\  (2x + 3) (3x - 4) = 0 \\   (2x + 3) = 0 \\  2x =  - 3 \\ x =  \frac{ (- 3)}{2}  \\  (3x - 4) = 0 \\ 3x = 4 \\ x =  \frac{4}{3}

 \alpha =  \frac{ (- 3)}{2}   \\  \beta =  \frac{4}{3}

 {ax}^{2}  + bx + c =  {6x}^{2}   + x - 12 \\ a = 6 \\ b = 1 \\ c =(  - 12) \\  \\

 \alpha  +  \beta  =  \frac{( - b)}{a}  \\  \alpha  \beta  =  \frac{c}{a}

 \alpha  +  \beta  =  \frac{ (- b)}{a}  \\  \frac{( - 3)}{2}  +  \frac{4}{3}  = \frac{ (- 1)}{6}  \\  \frac{( - 3 \times 3 ) + (4 \times 2)}{6}  =  \frac{( - 1)}{6}  \\  \frac{( - 9) + (8)}{6}  =  \frac{ - 1)}{6}  \\  \frac{( - 1)}{6}  =  \frac{( - 1)}{6}

( \alpha  \beta  =  \frac{c}{a}  \\  \frac{( - 3)}{2}   \times \frac{4}{3}  =  \frac{( - 12)}{6}  \\  \frac{( - 12)}{6}  =  \frac{( - 12)}{6} \\  ( - 2) = ( - 2)

HOPE IT HELPS YOU........

Similar questions