Find the zeros of the polynomial
Attachments:
Answers
Answered by
2
Hey user here is your answer
Attachments:
Answered by
1
Hii !!
f(x) = x² - (√3 + 1)x + √3
f(x ) = x² - √3x - x + √3 = 0
f(x) = x( x - √3) - 1 ( x - √3 ) = 0
f(x) = (x - 1) (x - √3) =0
x - 1 = 0
x = 1
and x - √3 = 0
x = √3
so f(x) = f(1) and f(-√3)
_____________________
let's verify it
f(1) = 1² - (√3 + 1) 1 + √3
f(1) = 1 - √3 - 1 + √3
f(1) = 0
and similarly
f( √3) = (√3)² -( √3 - 1 ) √3 + √3
f( √3) = 3 - 3 - √3 + √3
f ( √3 ) = 0
hence , my both answer is verified thou
________________________
Hope it helps you !!!
@Rajukumar111
f(x) = x² - (√3 + 1)x + √3
f(x ) = x² - √3x - x + √3 = 0
f(x) = x( x - √3) - 1 ( x - √3 ) = 0
f(x) = (x - 1) (x - √3) =0
x - 1 = 0
x = 1
and x - √3 = 0
x = √3
so f(x) = f(1) and f(-√3)
_____________________
let's verify it
f(1) = 1² - (√3 + 1) 1 + √3
f(1) = 1 - √3 - 1 + √3
f(1) = 0
and similarly
f( √3) = (√3)² -( √3 - 1 ) √3 + √3
f( √3) = 3 - 3 - √3 + √3
f ( √3 ) = 0
hence , my both answer is verified thou
________________________
Hope it helps you !!!
@Rajukumar111
Similar questions