Math, asked by Necrazoma1, 1 year ago

Find the zeros of the polynomial 4 root 3 X square + 4 root 3 x minus 3 root 3 also verify the relationship between the zeros and coefficient

Answers

Answered by rizwan35
58
given \: equation \: is \: 4 \sqrt{3} x {}^{2} 4 \sqrt{3} x - 3 \sqrt{3} = 0 \\ \\ on \: dividing \: equation \: by \sqrt{3} \\ \\ 4x {}^{2} + 4x - 3 = 0 \\ \\ 4x {}^{2} + 6x - 2x - 3 = 0 \\ \\ 2(2x + 3) - 1(2x + 3) = 0 \\ \\ (2x - 1)(2x + 3) = 0 \\ \\ therefore \: roots \: are \: \: x = \frac{1}{2} and \: x = \frac{ - 3}{2}

verfication ;<br /><br />\: putting \: x = \frac{1}{2} \: in l.h.s. \: of \: \: given \: equation\: \\ \\ \: \: 4 \sqrt{3} \times( \frac{1}{2} ) {}^{2} + 4 \sqrt{3} \times \frac{1}{2} - 3 \sqrt{3} \\ = 0 = r.h.s. \\ \\ \\ now \: putting \: x = \frac{ - 3}{2} \: in \: l.h.s. of \: the \: given \: equation\\ \\ 4 \sqrt{3} ( \frac{ - 3}{2} ) {}^{2} + 4 \sqrt{3} \frac{( - 3)}{2} - 3 \sqrt{3} \\ \\ = 0 = r.h.s.\\ \\ \\ hope \: it \: helps...
Answered by guptasingh4564
19

The Sum of zeros is -1 and Product of zeroes is -\frac{3}{4}

Step-by-step explanation:

Given,

Find the zeros of the polynomial 4\sqrt{3}x^{2} +4\sqrt{3}x-3\sqrt{3}

Let,

4\sqrt{3}x^{2} +4\sqrt{3}x-3\sqrt{3}=0

4\sqrt{3}x^{2} +6\sqrt{3}x-2\sqrt{3}x-3\sqrt{3}=0

=2\sqrt{3}x(2x+3)-\sqrt{3}(2x+3) =0

\sqrt{3}(2x-1)(2x+3)=0

2x-1=0

x=\frac{1}{2}

And,

(2x+3)=0

2x=-3

x=\frac{-3}{2}

Let,

Alpha=-\frac{3}{2} and Beta=\frac{1}{2}

Relationship between zeroes and Coefficient,

Sum of zeroes = Alpha + Beta

Sum of zeroes = -\frac{3}{2} + \frac{1}{2}

Sum of zeroes = -1

And,

Product of zeroes = Alpha \times Beta

Product of zeroes = -\frac{3}{2}  \times \frac{1}{2}

Product of zeroes = -\frac{3}{4}

So, The Sum of zeros is -1 and Product of zeroes is -\frac{3}{4}

Similar questions