Math, asked by irfannatha4506, 1 month ago

find the zeros of the polynomial 6x²-x-2 and verify the relationship between the zeros and the Coefficients.​

Answers

Answered by Anonymous
6

\huge\purple{\boxed{\underline{ANSWER}}}

GIVEN THAT:

➲ Polynomial = 6x²-x-2

TO FIND:

➲ The zeros of given polynomial and also to verify relationship between the zeros and the Coefficients.

FORMULA:

➲ If any quadratic polynomial is in standard form ax²+ bx + c.

where a and b are the Coefficients of x² and x respectively and c is the constant term

if α and β are the zeros of this polynomial then

&#10230 \:  \:  \alpha  +  \beta  =  \frac{ - b}{a}  \\  \\ &#10230 \:  \:  \alpha  \beta  =  \frac{c}{a}  \:  \:  \:  \:  \:  \:  \:  \:

SOLUTIONS:

➲ polynomial = 6x²-x-2

➲ After comparing its standard form ax²+ bx + c.

➲ we get a = 6, b= -1, c = -2

&#10230 \:  \: 6 {x}^{2}  - x - 2  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\ &#10230 \:  \: 6 {x}^{2}  - 4x + 3x - 2  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\ &#10230 \:  \: 2x(3x - 2) + 1(3x - 2) \\  \\ &#10230 \:  \: (3x - 2)(2x + 1) \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ if \: (3x - 2)(2x + 1) = 0 \\  \\ &#10230 \:  \: 3x - 2 = 0  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ &#10230 \:  \: x =  \frac{2}{3}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ &#10230 \:  \: 2x + 1 = 0 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ &#10230 \:  \: x =  \frac{ - 1}{2}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

➲ now we get two zeroes of this polynomial

&#10230 \:  \:  \alpha  =  \frac{2}{3} \:  \:  \:  \:  \:   \\  \\ &#10230 \:  \:  \beta  =  \frac{ - 1}{2}

VERIFICATION:

➲ Sum of the zeros

&#10230 \:  \:  \alpha  +  \beta  =  \frac{ - b}{a}   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\ &#10230 \:  \:  \frac{2}{3}  +  (\frac{ - 1}{2})  =  \frac{ - ( - 1)}{6}  \\  \\ &#10230 \:  \:  \frac{2}{3}  -  \frac{1}{2}  =  \frac{1}{6}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ &#10230 \frac{4 - 3}{6}  =  \frac{1}{6}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ &#10230 \:  \:  \frac{1}{6}  =  \frac{1}{6}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

➲ Products of the zeros

&#10230 \:  \:  \alpha  \beta  =  \frac{c}{a}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ &#10230 \:  \:  \frac{\cancel2}{3}  \times  \frac{ - 1}{\cancel2}  =  \cancel\frac{ - 2}{6}  \\  \\ &#10230 \:  \:  \frac{ - 1}{3}  =  \frac{ - 1}{3}  \:  \:  \:  \:  \:  \:  \:  \:

➲ HENCE VERIFIED.

Similar questions