Math, asked by ashmitmonga00789, 3 months ago

find the zeros of the polynomial and verify the relationship between the zeros and coefficients a) 10y^2 3y-1. b) x^2 1/6x-2

Attachments:

Answers

Answered by shifra200326
2

the discriminant of the quadratic equations 2x+5x+k=0 then find the Value of k.

Answered by vipinkumar212003
3

Step-by-step explanation:

(a) :10 {y}^{2} +3y-1\\10 {y}^{2} +5y-2y-1=0\\5y(2y+1)-1(2y+1)=0\\(5y-1)(2y+1)=0\\y= \frac{1}{5} \:,\: \frac{-1}{2} \\  \:  \:  \:  \:  \:  \: α\: \: ,\: \: β \\ Sum \: of \: zeroes: \\ α+β=- \frac{b}{c} \\ \frac{1}{5}  +  \frac{(-1)}{2}  =  -  \frac{3}{10}  \\  \frac{2 - 5}{10}  =   - \frac{3}{10}  \\   - \frac{3}{10}  =   - \frac{3}{10} \: \:  \: verified \\  product \: of \: zeroes:  \\  \alpha  \beta  =  \frac{c}{a}  \\  \frac{1}{5}  \times  \frac{ - 1}{2} =  \frac{ - 1}{10}   \\  \frac{ - 1}{10} =  \frac{ - 1}{10} \:  \: verified  \\ (b) : {x}^{2} + \frac{1}{6} x-2\\ \frac{6 {x}^{2}  + x - 12}{6} =0\\ 6 {x}^{2}  + x - 12 =0\\ 6 {x}^{2} + 9x - 8x - 12 = 0 \\  3x(2x+3)-4(2y+3)=0\\(3x-4)(2x+3)=0\\x= \frac{4}{3} \:,\: \frac{ - 3}{2} \\  \:  \:  \:  \:  \:  \: α\: \: ,\: \: β \\ Sum \: of \: zeroes: \\ α+β=- \frac{b}{c} \\ \frac{4}{3}  +  \frac{(-3)}{2}  =  -  \frac{1}{6}  \\  \frac{8 - 9}{6}  =   - \frac{1}{6}  \\   - \frac{1}{6}  =   - \frac{1}{6} \: \:  \: verified \\ product \: of \: zeroes:  \\  \alpha  \beta  =  \frac{c}{a}  \\  \frac{4}{3}  \times  \frac{ - 3}{2} =  \frac{ - 12}{6}   \\   - 2 =   - 2 \:  \: verified

HOPE THIS HELPS

MARK ME BRAINLIEST

Similar questions