Math, asked by survirawat7753, 1 year ago

Find the zeros of the polynomial bg factorisation method and verify the relation 3x2+4x-4

Answers

Answered by Divyaalia
5

3 {x}^{2}  + 4x - 4 = 0 \\ 3 {x}^{2}  + (6 - 2)x - 4 = 0 \\ 3 {x}^{2}  + 6x - 2x - 4 = 0 \\ 3x(x + 2) - 2(x + 2) = 0 \\ (3x - 2)(x + 2) = 0 \\  \\ 3x - 2 = 0 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: x + 2 = 0 \\  \:  \:  \:  \:  \:  \:  \:  \: 3x = 2 \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \: x =  - 2 \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  x =  \frac{2}{3}

.......verification.......

sum \: of  \: zeros =  \frac{ - b}{a} \\  \\ \:  \:  \:  \:  \:  \:  \:  \:   \frac{2}{3}   + ( - 2) =  \frac{ - 4}{3}  \\  \\    \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \frac{2 - 6}{3}  =  \frac{ - 4}{3}  \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \frac{ - 4}{3}  =  \frac{ - 4}{3}

product \: of \: zeros \:  =  \frac{c}{a}  \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \frac{2}{3}  \times  - 2 =  \frac{ - 4}{3}  \\  \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:    \frac{ - 4}{3}  =  \frac{ - 4}{3}
hence \: verified...
Answered by nilesh102
45

Question:-

Find the zeros of the polynomial bg factorisation method and verify the relation 3x²+4x-4

Solution:-

=> 3x² + 4x - 4

=> 3x² + 6x - 2x - 4

=> 3x ( x + 2 ) - 2 ( x + 2 )

=> ( 3x - 2 ) ( x + 2 )

let,

=> 3x - 2 = 0 or x + 2 = 0

=> 3x = 2 or x = - 2

=> x = 2/3 or x = - 2

i hope it helps you.

Similar questions