Math, asked by tshantha86, 11 months ago

find the zeros of the polynomial P of x is equal to x square - 15​

Answers

Answered by Anonymous
5

Answer:

 =  &gt; X2-15x+50 \\ </p><p></p><p> =  &gt; X2-5x-10x+50 \\ </p><p></p><p> =  &gt; X(x-5)+10(x-5) \\  \\ </p><p></p><p> =  &gt; (X-5) +(x+10) \\  \\ </p><p></p><p></p><p>hope \: it \: hepls \: you</p><p>

@ARSH❤️❤️

Answered by BrainlyConqueror0901
4

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Values\:of\:x=\pm\sqrt{15}}}}\\

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green {\underline \bold{Given :}} \\  \tt:  \implies  {x}^{2}  - 15=0 \\  \\ \red{\underline \bold{To \: Find:}} \\  \tt:  \implies Values \: of \: x = ?

• According to given question :

 \tt:  \implies x^{2}-15 = 0 \\  \\   \tt:  \implies  x^{2} = 15\\\\ \tt:\implies x=\sqrt{15}\\\\ \green{\tt\therefore x=\pm\sqrt{15}}

If the question is-

If the question is-find the zeros of the polynomial P(x), x is equal to x square - 15.

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Values\:of\:x=\frac{1+\sqrt{61}}{2}}}}\\

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green {\underline \bold{Given :}} \\  \tt:  \implies x =  {x}^{2}  - 15 \\  \\ \red{\underline \bold{To \: Find:}} \\  \tt:  \implies Values \: of \: x = ?

• According to given question :

 \bold{As \: we \: know \: that} \\  \tt:  \implies x =  {x}^{2}  - 15 \\  \\  \tt:  \implies  {x}^{2}  -x - 15 = 0 \\  \\  \bold{Solving \: by \: Quadratic \: formula} \\  \tt:  \implies d =  {b}^{2}  - 4ac \\  \\  \tt:  \implies d =  { (- 1)}^{2}  - 4 \times 1 \times ( - 15) \\  \\  \tt:  \implies d = 1 + 60 \\  \\  \tt:  \implies d =  61 \\  \\  \tt:  \implies x =  \frac{ - b \pm \sqrt{d} }{2a}  \\  \\  \tt:  \implies x =  \frac{ - ( - 1) \pm \sqrt{61} }{2 \times 1}  \\  \\   \green{\tt:  \implies x =  \frac{1 \pm \sqrt{61} }{2} }

Similar questions