Math, asked by Ryan3923, 11 months ago

Find the zeros of the polynomial v2+4√3v-15

Answers

Answered by ishiqua90
3

v*2 +4/3v -15

v*2 +(5/3v-/3v) -15

v*2+5/3v -/3v-15

v(v+5/3) -/3(v+5/3)

(v+5/3) (v-/3)

v+5/3=0

v=-5/3

v-/3=0

v=/3

5/3 and /3 are the zeros of the polynomial

THANKS FOR YOUR QUESTION

IF YOU FIND IT APPROPRIATE MARK IT BRAINLIST

Answered by Anonymous
13

\textbf{\underline{\underline{According\:to\:the\:Question}}}

★Assumption

f(v) = v² + 4√3v - 15

★We have

a = 1

b = 4√3

c = -15

f(v) = v² + 5√3v - √3v - 15

f(v) = v(v + 5√3) - √3(v + 5√3)

f(v) = (v - √3)(v + 5√3)

v = √3

v = -5√3

★Zeroes are √3 and -5√3

★Sum of zeroes = α + β

\tt{\rightarrow\alpha+\beta=-\dfrac{b}{a}}

\tt{\rightarrow\sqrt{3}+(-5\sqrt{3}=-\dfrac{4\sqrt{3}}{1}}

\tt{\rightarrow -4\sqrt{3}=\dfrac{-4\sqrt{3}}{1}}

⇒ -4√3 = -4√3

★Product of Zeroes = α × β

\tt{\rightarrow\alpha\times\beta=-\dfrac{c}{a}}

\tt{\rightarrow(\sqrt{3})(-5\sqrt{3})=-\dfrac{15}{1}}

⇒ -15 = -15

\Large{\fbox{Hence\;Verified}}

Similar questions