Math, asked by arkyabeepsaha, 7 months ago

find the zeros of the Polynomial x ²-3 and verify the relationship between the Zero and coefficientsa​

Answers

Answered by Anonymous
16

Answer:

(∝+β)=0 and (∝β)=-3

Step-by-step explanation:

Given polynomial p(x)=x²-3

                               p(x)=x²-(√3)²

                                           ↓

                                   It is in the form of a^{2}-b^{2} and we know that a^{2}-x^{2}=(a+b)(a-b)

a^{2}=x^{2}

b^{2}=(\sqrt3)^{2}

(x)²-(√3)²=(x+√3)(x-√3)

            x+√3=0                        

                   x=0-√3    

                   x=-√3

                  ∝=-√3

and,x-√3=0

             x=0+√3

             x=+√3

             β=√3

x²-3⇒x²-0x-3

Sumof zeroes(∝+β)=-b/a

                    -√3+√3=-0/1

                               0=0

Product of zeroes(∝β)=c/a

                        -√3×√3=-3/1

                                 -3=-3

Please mark it as brainlist answer

Similar questions