Math, asked by namanpandey572, 6 months ago

find the zeros of the polynomial x^3-6 x^2+11 x-6​

Answers

Answered by bhavanim666
0

Answer:

Since (x+1) is a factor of given cubic equation.

∴ it will completely divide the given equation.

Now, (x

3

+6x

2

+11x+6)=(x

2

+5x+6)(x+1)

=(x+2)(x+3)(x+1)

∴ zeros of (x+1)(x+2)(x+3)=0 are

x+1=0⇒x=−1

x+2=0⇒x=−2

x+3=0⇒x=−3

Step-by-step explanation:

चूंकि (x + 1) दिए गए घन समीकरण का एक कारक है।

Div यह दिए गए समीकरण को पूरी तरह से विभाजित करेगा।

अब, (एक्स

3

+ 6x

2

+ 11x + 6) = (x

2

+ 5x + 6) (x + 1)

= (X + 2) (x + 3) (x + 1)

(X + 1) (x + 2) (x + 3) = 0 के शून्य हैं

x + 1 = 0⇒x = -1

एक्स + 2 = 0⇒x = -2

x + 3 = 0⇒x = -3

Similar questions