Math, asked by nandishnaik95, 1 year ago

find the zeros of the polynomial x square - 3 and verify the relationship between the zeros and the coefficients

Answers

Answered by TPS
66
 {x}^{2} - 3 = 0 \\ \\ {x}^{2} = 3 \\ \\ x = \pm \sqrt{3} \\ \\ x = \sqrt{3} \: \: and \: \: - \sqrt{3}

\text{Let the zeroes be} \ \alpha= \sqrt{3} \ \ and\ \ \beta= - \sqrt{3} <br />\\ \\ coefficients \: are : \\ a = 1 \\ b = 0 \\ c = - 3 \\ \\ \text{Relation between zeroes and coefficient are:} \\ \\ 1.sum \: of \: zeroes: \alpha + \beta = \frac{ - b}{a} \\ \sqrt{3} + ( - \sqrt{3} ) = 0 = \frac{ - (0)}{1} \\ \\ 2.product \: of \: zeroes: \alpha \times \beta = \frac{c}{a} \\ \sqrt{3} \times ( - \sqrt{3} ) = - 3 = \frac{3}{1}

VickyskYy: Nice
Answered by SmãrtyMohït
85
Here is your solution

\bold{\purple{\boxed{\boxed{\underline{Given:-}}}}}

x {}^{2} - 3 = 0 \\ x {}^{2} = 3 \\ x = + - \sqrt{3}
Zeroes\: are:- \\\:α = \sqrt{3} \: and \: β = - \sqrt{3}
\\<br />Coefficient \: are \\ <br /><br />a= 1 \\ <br />b= 0 \\ <br />c= -3 \\ <br /><br />Now \: relationship \: between \: the \: zeros \: and \: the \\ coefficients.\\ \\ 1.sum \: of \: zeroes \\ α+β= \frac{ - b}{a} \\ \\ \sqrt{3} + ( - \sqrt{ 3} ) = \frac{ - (0)}{1} \\ \\ 0 = 0 \\

2.product \: of \: zeroes \\ α× \: β = \frac{c}{a} \\ \\ \sqrt{3} \times - \sqrt{3} = \frac{ - 3}{1} \\ - 3 = -3

\bold{\red{\boxed{\boxed{\underline{Hope\:it\:helps\:you}}}}}

princess489: nice answer
VickyskYy: Nice
Anonymous: perfect
ans81: good
ans81: but this answer is same as Answer given by TPS
Similar questions