Math, asked by bhumipatoliya1178, 1 year ago

Find the zeros of the polynomial x2 +2x-15,and verify the relationship between the zeroes and coefficients

Answers

Answered by creamiepie
35
\mathcal{\red{\huge{Heya\:mate\:!!}}}


\huge\mathbb\color{aqua}{HERE'S \: UR\: ANSWER}

✶⊶⊷⊶⊷⊷⊶⊷ ❍⊷⊶⊷⊶⊷⊶⊷✶

p(x) =  {x}^{2}  + 2x - 15 = 0

p(x) = 0

 \therefore{ {x}^{2}  + 2x - 15 = 0}  \\  \\  =  >  {x}^{2}  + (5 - 3)x - 15 = 0 \\  \\  =  >  {x}^{2}  + 5x - 3x - 15 = 0 \\  \\  =  > x(x + 5) - 3(x + 5) = 0 \\  \\  =  > (x + 5)(x - 3) = 0 \\  \\  \\

x = -5 and x = 3


VERIFICATION

sum \: of \: the \: zeroes \:  =  \frac{ - b}{a}  \\  \\  =  >  - 5 + 3 =  \frac{ - 2}{1}  \\  \\  =  >  - 2 =  - 2 \\  \\ again \\  \\ product \: of\: the \: zeroes \:  =  \frac{c}{a}  \\  \\  =  >  - 5 \times 3 =  \frac{ - 15}{1}  \\  \\  =  >  - 15 =  - 15
verified


✶⊶⊷⊶⊷⊷⊶⊷ ❍⊷⊶⊷⊶⊷⊶⊷✶

[ Hope it helps u ] ✌✌

<b><marquee behavior ="alternate">❤❤--------------------If it helped u please mark my answer as brainliest -----------------❤❤</marquee></b>

<b><marquee>══════•❁❀❁•══════With regards Creamiepie══════•❁❀❁•══════</marquee></b>
Answered by vaishnavitiwari1041
15

Answer:

Here's your answer

 {x}^{2}  + 2x - 15 \\  \\  {x}^{2}   - 3x + 5x - 15 \\  \\ x(x - 3) + 5(x - 3) \\  \\ (x - 3)(x + 5) \\  \\ verification \\  \\  \alpha  +  \beta  =  \frac{ - b}{a}

 \alpha  = 3 \: and \:  \beta  =  - 5 \\  \\  \alpha  +  \beta  =  - 2 \\  \\ 3 - 5 =  - 2 \\  \\  - 2 =  - 2

 \alpha  \beta  =  \frac{c}{a}  \\  \\ 3 \times  - 5 =  - 15 \\  \\  - 15 =  - 15 </strong><strong>

Hence verified

Hope it helps

Similar questions