Math, asked by Roxyrajesh, 4 months ago

Find the zeros of the polynomial x² + 4x-5
and Verify the relation between the zeroes and the
co-efficient​

Answers

Answered by EliteZeal
13

\underline{\underline{\huge{\gray{\tt{\textbf Answer :-}}}}}

 \:\:

\sf\large\bold{\orange{\underline{\blue{ Given :-}}}}

 \:\:

  • A quadratic polynomial x² + 4x - 5

 \:\:

\sf\large\bold{\orange{\underline{\blue{ To \: Find :-}}}}

 \:\:

  • Finding the zeroes of the given quadratic polynomial

  • Verify the relation between the zeroes and the coefficient

 \:\:

\sf\large\bold{\orange{\underline{\blue{ Solution :-}}}}

 \:\:

Zeroes of quadratic polynomial

 \:\:

➜ x² + 4x - 5

 \:\:

By splitting the middle term method

 \:\:

➜ x² + 4x - 5 = 0

 \:\:

➜ x² + 5x - 1x - 5 = 0

 \:\:

➜ x(x + 5)-1(x + 5) = 0

 \:\:

➜ (x + 5)(x - 1) = 0

 \:\:

  • x = -5
  • x = 1

 \:\:

∴ The given quadratic polynomial has -5 & 1 as its zeroes

 \:\:

━━━━━━━━━━━━━━━━━━━━━━━━━

 \:\:

Relationship between zeroes and coefficient

 \:\:

 \underline{\bold{\texttt{For general quadratic polynomial :}}}

 \:\:

  • For a quadratic polynomial ax² + bx + c

 \:\:

 \underline{\bold{\texttt{Sum of zeroes :}}}

 \:\:

 \bf \alpha + \beta = -\dfrac { b } { a }  ⚊⚊⚊⚊ ⓵

 \:\:

 \underline{\bold{\texttt{Product of zeroes :}}}

 \:\:

 \bf \alpha \times \beta = \dfrac { c} { a }  ⚊⚊⚊⚊ ⓶

 \:\:

Where,

 \:\:

  • α = 1st zero

  • β = 2nd zero

  • a = Coefficient of x²

  • b = Coefficient of x

  • c = Constant term

 \:\:

━━━━━━━━━━━━━━━━━━━━━━━━━

 \:\:

 \underline{\bold{\texttt{For the given quadratic polynomial :}}}

 \:\:

  • For the quadratic polynomial x² + 4x - 5

 \:\:

 \underline{\bold{\texttt{Sum of zeroes :}}}

 \:\:

  • α = -5

  • β = 1

  • a = 1

  • b = 4

 \:\:

Putting the above values in

 \:\:

 \bf \alpha + \beta = -\dfrac { b } { a }

 \:\:

 \sf -5 + 1 = -\dfrac { 4} { 1}

 \:\:

➜ -4 = -4

 \:\:

Verified

 \:\:

━━━━━━━━━━━━━━━━━━━━━━━━━

 \:\:

 \underline{\bold{\texttt{Product of zeroes :}}}

 \:\:

  • α = -5

  • β = 1

  • a = 1

  • c = -5

 \:\:

Putting the above values in

 \:\:

 \bf \alpha \times  \beta = \dfrac { c} { a }

 \:\:

 \sf -5\times 1 = -\dfrac { -5} { 1}

 \:\:

➜ -5 = -5

 \:\:

Verified

 \:\:

Similar questions