Math, asked by pournamijeevaram, 3 months ago

Find the zeros of the polynomial x²-7x+12 and find the relationship between the zeroes and coefficients?​

Answers

Answered by BrainlyYuVa
14

Solution

Given :-

  • Polynomial equation, x² - 7x +12 = 0

Find :-

  • Zeroes of this Equation,
  • Relationship between zeroes & uts coefficient

Explanation

Let,

  • Zeroes be p & q

Using Factories Method .

==> x² - 7x + 12 = 0

==> x² - 4x - 3x + 12 = 0

==> x(x -4) - 3(x - 4) = 0

==> (x - 3)(x - 4) = 0

==> (x - 3) = 0. Or, x - 4 = 0

==> x = 3 Or, x = 4

Since,

  • Zeroes be ,p = 3
  • q = 4.

________________________

Now, Calculate relationship between zeroes & coefficient.

Using Formula

Sum of zeroes = -(Coefficient of x)/(coefficient of )

==> p + q = -(-7)/1

==> p + q = 7___________(1)

keep value of p & q,

==> 3 + 4 = 7

==> 7 = 7

L.H.S. = R.H.S.

__________________

Again,

Product of zeroes = (constant part)/(coefficient of )

==> p.q = 12/1

==> p.q = 12 __________(2)

keep value of p & q

==> 3 × 4 = 12

==> 12 = 12

L.H.S. = R.H.S.

That's Proved.

________________

Answered by Anonymous
179

Given Polynomial : x² - 7x + 12

{ }

Need to find : The Zeroes of the given polynomial & also we've to verify the relationship b/w its zeroes & their cofficients.

{ }

{ }

\:\:❭❭ Finding out the zeroes of Given polynomial :

{ }

{ }

\:\:\:\:\:\:\:\:\:\::\:\Longrightarrow\:{\sf{x²\:-\:7x\:+\:12}}

{ }

\:\:\:\:\:\:\:\::\:\Longrightarrow\:{\sf{x²\:-\:7x\:+\:12\:=\:0}}

{ }

\:\:\:\:\:\::\:\Longrightarrow\:{\sf{x²\:-\:4x\:-\:3x\:+\:12\:=\:0}}

{ }

\:\:\:\:\:\::\:\Longrightarrow\:{\sf{(x\:-\:3)\:(x\:-\:4)}}

{ }

\:\:\:\:\:\:\:\::\:\Longrightarrow\:{\underline{\boxed{\frak{\blue{x\:=\:3\:or\:x\:=\:4}}}}}\:\bigstar

{ }

{ }

\:\therefore\:{\underline{\sf{Hence,\:the\:zeroes\:of\:the\:given\:polynomial\:are\:{\textsf{\textbf{3\:and\:4 }}}}}}.

{ }

\:\:\:\:\:\:\:\:━━━━━━━━━━━━━━━━━━━

{ }

V E R I F I C A T I O N :

{ }

☆ If α and β are roots of any Quadratic equation ax² + bx + c = 0 then Sum and Product is given by :

{ }

\:\:\:\:\:{\bold{⋆}}\:Sum (α + β) = (-b)/ a

\:\:\:\:\:{\bold{⋆}}\:Product (αβ) = c/a

{ }

{ }

\:\:\:\:\:\:\:\:\:\:\:\:\:{\sf{✠\:Sum\:of\:Zeroes\::}}

{ }

\:\:\:\:\:\:\:\:\:{↠\:\alpha\:+\:\beta\:=\:\sf{\dfrac{-b}{a}}}

{ }

\:\:\sf{↠\:(3)\:+\:(4)\:=\:{\dfrac{-\:(-7)}{1}}}

{ }

\:\:\:\:\:\:\:\:\:\sf{↠\:7\:=\:-\:(-7)}

{ }

\:\:\:\:\:\:\:\:\:\:\:\:\:↠\:{\underline{\boxed{\frak{7\:=\:7}}}}

{ }

{ }

\:\:\:\:\:\:\:\:\:\:\:\:\:{\sf{✠\:Product\:of\:Zeroes\::}}

{ }

\:\:\:\:\:\:\:\:\:{↠\:\alpha\:\beta\:=\:\sf{\dfrac{c}{a}}}

{ }

\:\:\sf{↠\:(3)\:\times\:(4)\:=\:{\dfrac{12}{1}}}

{ }

\:\:\:\:\:\:\:\:\:\:\:\:\:↠\:{\underline{\boxed{\frak{12\:=\:12}}}}

{ }

\:\:\:\:\:\:\:\:\:\:\:\:\:\therefore\:{\underline{\purple{\textsf{\textbf{Hence,\:Verified!}}}}}

\:\:\:\:\:\:\:\:━━━━━━━━━━━━━━━━━━━

{\sf{\bf{\red{@ℐᴛᴢӇᴀᴘᴘʏҨᴜᴇᴇɴ࿐}}}}

Similar questions