Math, asked by chhagan34, 10 months ago

Find the zeros of the polynomial x2 +
coefficients and zeros of the polynomial.
x -2, and verify the relation between the

Answers

Answered by amitkumar44481
2

AnsWer :

x = -2 and x = 1.

Concepts Required :

 \tt \dagger \:  \:  \:  \:  \: sum \: of \: zeros.

  \tt\alpha +   \beta  =  \dfrac{ - b}{a}  =  \dfrac{coefficient \: of \:  {x}^{2} }{coefficient \: of \:  x}

 \tt\dagger \:  \:  \:  \:  \: product\: of \: zeros.

  \tt\alpha \beta  =  \dfrac{ c}{a}  =  \dfrac{contant \: term }{coefficient \: of \:  x}

Solution :

We have,

  \tt \dagger \:  \:  \:  \:  \: {x}^{2}  + x - 2 = 0.

Let's try to Find there Zeros,

  \tt \longmapsto {x}^{2}  + x - 2 = 0.

  \tt \longmapsto  {x}^{2} +  2x - x  -  2 = 0.

  \tt \longmapsto  x(x  + 2) - 1(x + 2) = 0.

  \tt \longmapsto (x - 1)(x + 2) = 0.

\rule{90}1

Either,

  \tt\mapsto x  - 1= 0.

  \tt \mapsto x = 1.

Or,

  \tt \mapsto x + 2 = 0.

  \tt \mapsto x =  - 2.

Let,

 \dagger \:  \:  \:  \:  \:  \:  \:  \: \alpha  =  - 2. \:  \:  \:  \:  \: and \:  \:  \:  \:  \:  \:  \beta  = 1.

\rule{90}1

Sum of Zeros,

   \tt \longmapsto  \alpha  +  \beta  =  \dfrac{ - b}{a}

  \tt \longmapsto  - 2 + 1 = 1.

  \tt \longmapsto 1 = 1.

\rule{90}1

Product of Zeros.

  \tt\longmapsto \alpha  \beta  =  \dfrac{c}{a}

  \tt \longmapsto  - 2 \times 1 =  - 2.

  \tt \longmapsto  - 2 =  - 2.

Hence Verify.

Similar questions