Math, asked by sgcal7, 4 months ago

find the zeros of the quadratic equation :-
2x^2-12x + 4=0​

Answers

Answered by Avidhabanerjee4
0

Answer:

please mark me as Branlist

Step-by-step explanation:

Hence, the roots of the given equation are 3 & ½.

Answered by xSoyaibImtiazAhmedx
0

2 {x}^{2}   -  12x + 40 = 0 \\  =  > 2( {x}^{2}  - 6x + 20) = 0 \\  =  > {x}^{2}  - 6x + 20= 0 \\  =  > x =  \frac{ - ( - 6) +   \sqrt{ {( - 6)}^{2}   - 4 \times 20 \times 1}}{2 \times 1}  \\  =  \frac{6 + \sqrt{ - 44}  }{2}  \\  =  \frac{6 + 2 \sqrt{ - 11} }{2 }  \\  =  3 +  \sqrt{ - 11} \\  \\  \\  \\  \\  \\ or  \:  \:  \:  \: x =  \frac{ - ( - 6)  -   \sqrt{ {( - 6)}^{2}   - 4 \times 20 \times 1}}{2 \times 1}  \\  =  \frac{6  - \sqrt{ - 44}  }{2}  \\  =  \frac{6  - 2 \sqrt{ - 11} }{2 }  \\  =  3  -  \sqrt{ - 11}

So, the roots are (3+√-11) and (3-√-11)

Similar questions