Math, asked by vengadesanvengatesan, 3 days ago

find the zeros of the quadratic equation x^2+3x+10

Answers

Answered by thoratshravani205
1

Answer:

  1. take x=0
  2. 2+3(0)+10
  3. 2+0+10
  4. 12 is the final ans
Answered by steffiaspinno
0

The zeros of the quadratic equation x²+3x+10 are \alpha =\frac{-3+\sqrt{31 } }{2} and \beta =\frac{-3-\sqrt{31 } }{2}

Explanation:

Given:

x²+3x+10

To find:

The zeros of the quadratic equation

Formula:

\alpha =\frac{-b+\sqrt{b^{2}-4ac } }{2a}

\beta =\frac{-b-\sqrt{b^{2}-4ac } }{2a}

Solution:

==> x²+3x+10

==> a = coefficient of x²

==> b = coeffcient of x

==> c = constant

==> a = 1

==> b = 3

==> c =10

==> Apply these values in the formula

==> \alpha =\frac{-b+\sqrt{b^{2}-4ac } }{2a}

==> \alpha =\frac{-3+\sqrt{3^{2}-4(1)(10) } }{2(1)}

==>\alpha =\frac{-3+\sqrt{9-4(10) } }{2}

==> \alpha =\frac{-3+\sqrt{9-40 } }{2}

==> \alpha =\frac{-3+\sqrt{31 } }{2}

==> \beta =\frac{-b-\sqrt{b^{2}-4ac } }{2a}

==> \beta =\frac{-3-\sqrt{3^{2}-4(1)(10) } }{2(1)}

==>\beta =\frac{-3-\sqrt{9-4(10) } }{2}

==> \beta =\frac{-3-\sqrt{9-40 } }{2}

==> \beta =\frac{-3-\sqrt{31 } }{2}

The zeros of the quadratic equation x²+3x+10 are \alpha =\frac{-3+\sqrt{31 } }{2} and \beta =\frac{-3-\sqrt{31 } }{2}

Similar questions