Math, asked by shilpasarab, 10 months ago

find the zeros of the quadratic polynomial 2 x ^2 - 8 x + 6 and verify the relation between zeros and its coefficient

Answers

Answered by Anonymous
27

AnswEr :

\bf{\green{\underline{\underline{\bf{Given\::}}}}}

The quadratic polynomial 2x² - 8x + 6 and verify the relationship between the zeroes and it's coefficient.

\bf{\green{\underline{\underline{\bf{To\:find\::}}}}}

The zeroes.

\bf{\green{\underline{\underline{\bf{Explanation\::}}}}}

We have, quadratic polynomial = 2x² - 8x + 6;

\leadsto\tt{2x^{2} -8x+6=0}\\\\\leadsto\tt{2x^{2} -6x-2x+6=0}\\\\\leadsto\tt{2x(x-3)-2(x-3)=0}\\\\\leadsto\tt{(x-3)(2x-2)=0}\\\\\leadsto\tt{(x-3)=0\:\:\:\:Or\:\:\:\:(2x-2)=0}\\\\\leadsto\tt{x-3=0\:\:\:\:\:Or\:\:\:\:\:2x-2=0}\\\\\leadsto\tt{x=3\:\:\:\:Or\:\:\:\:2x=2}\\\\\leadsto\tt{x=3\:\:\:\:\:Or\:\:\:\:\:x=\cancel{\dfrac{2}{2} }}\\\\\leadsto\tt{\orange{x=3\:\:\:Or\:\:\:x=1}}

Thus,

\bf{\large{\underline{\sf{\red{We\:have\:zeroes\:are\:\alpha =3\:\:\&\:\:\beta =1.}}}}}

Relation between the zeroes and it's coefficient :

From quadratic polynomial :

  • a = 2
  • b = -8
  • c = 6

\bf{\large{\purple{\underline{\underline{\blacksquare{\bf{Sum\:of\:the\:zeroes\::}}}}}}}

\mapsto\sf{\alpha +\beta =\dfrac{-b}{a} =\dfrac{Coefficient\:of\:(x)^{2} }{Coefficient\:of\:(x)} }\\\\\\\\\mapsto\sf{3+1=4=\dfrac{-b}{a} }}

\bf{\large{\purple{\underline{\underline{\blacksquare{\bf{Product\:of\:zeroes\::}}}}}}}

\mapsto\sf{\alpha \times \beta =\dfrac{c}{a} =\dfrac{Constant\:term }{Coefficient\:of\:(x)} }\\\\\\\\\mapsto\sf{3\times 1=3=\dfrac{c}{a} }}

Thus,

\bf{\small{\red{\underline{\sf{The\:relation\:between\:the\:zeroes\:and\:it's\:coefficient\:of\:polynomial\:is\:\:Verified.}}}}}

Answered by Anonymous
20

2 {x}^{2}  - 8x + 6 = 0 \\ 2 {x}^{2} - 2x - 6x + 6 = 0 \\ 2x (x - 1) - 6(x - 1) = 0 \\ (x - 1)(2x - 6) = 0 \\ x = 1 \: or \: x =  \dfrac{6}{2}  = 3 \\ so \:  \alpha  = 1 \: and \: \beta  = 3  \\\\\ from \: the \: quadratic \: equation \\  \dfrac{ - b}{a}  =  \dfrac{ - ( - 8)}{2}  = 4 (i) \\  \alpha  +  \beta  = 1 + 3 = 4(ii) \\ from \:( i )\: and \:( ii )\:  \\  \alpha  +  \beta  =  \dfrac{ - b}{a}  \\  \\  \\  \dfrac{c}{a}  =  \frac{6}{2}  = 3(iii) \\  \alpha  \beta  = 1 \times 3 = 3(iv) \\ from \: (iii ) \: and \: (iv) \\  \alpha  \beta  =  \dfrac{c}{a}

Similar questions