Math, asked by jyothirraghavajyothi, 11 months ago

find the zeros of the quadratic polynomial 2 x square - 7 x + 5 is equals to zero and verify the relationship between zeros and coefficients​

Answers

Answered by Anonymous
33

Answer:

Zeroes are (5/2) and (1)

Step-by-step explanation:

Given : f(x) = 2x² - 7x + 5

By Middle Term Factorisation

→ 2x² - 2x - 5x + 5

Taking common terms out.

→ 2x(x - 1) - 5(x - 1)

→ (2x - 5)(x - 1)

To find the zeroes, we use zero product rule.

→ (2x - 5) = 0 and (x - 1) = 0

x = 5/2 and x = 1

Let α and β be the zeroes of the above polynomial.

α = 5/2 & β = 1

______________________________

On comparing the above polynomial with ax² + bx + c, we get

a = 2, b = - 7, c = 5

______________________________

Verification:

Sum of zeroes = α + β

→ 5/2 + 1

→ (5 + 2)/2

7/2

Also, Sum of zeroes = - b/a

→ - (- 7)/2

7/2

Product of zeroes = αβ

→ (5/2)(1)

5/2

Also, Product of zeroes = c/a

5/2

______________________________

Answered by Anonymous
25

AnswEr :

\underline{\bigstar\:\textsf{According \: to \: given \: in \: question:}}

\normalsize\ : \implies\sf\ P(x) = 2x^2 - 7x + 5

\scriptsize\sf{\: \: \: \: \: \:( \therefore\ \: \red{Using \: middle \: term \: factorization}) }

\normalsize\ : \implies\sf\ 2x^2 - 2x - 5x +5 \\ \\ \normalsize\ : \implies\sf\ 2x(x - 1) - 5(x - 1) \\ \\ \normalsize\ : \implies\sf\underbrace{(x - 1)}_{case \: 1} \: \underbrace{(2x - 5)}_{case \: 2}

 \rule{100}2

\:\bullet\:\sf\ Case \: 1 :

\normalsize\ : \implies\sf\ (x - 1) = 0 \\ \\ \normalsize\ : \implies\sf\ x = 0 + 1 = 1

\normalsize\ : \implies{\boxed{\sf \green{ x = 1}}}

\:\bullet\:\sf\ Case \: 2:

\normalsize\ : \implies\sf\ (2x - 5) = 0 \\ \\ \normalsize\ : \implies\sf\ x = \frac{5}{2}

\normalsize\ : \implies{\boxed{\sf \green{ x = \frac{5}{2} }}}

\:\bullet Here, we get x = 1, 5/2, let the one zero be \bf\alpha and other be \bf\beta.So;

\:\star\normalsize\sf\:\alpha = 1 \\ \\ \:\star\normalsize\sf\:\beta = \frac{5}{2}

\:\bullet Now; compare the given polynomial with general form of polynomial \normalsize\sf\ [ax^2 + bx + c] , we get a = 2, b = -7, c = 5.

 \rule{100}2

VeriFicatioN :

\:\bullet \normalsize\frak{\underline{\underline \purple{Sum \: of \: roots-}}}

\normalsize\ : \implies\sf\ \alpha + \beta = \frac{-b}{a} \\ \\ \normalsize\ : \implies\sf\ 1 + \frac{5}{2} = \frac{-(7)}{2} \\ \\ \normalsize\ : \implies\sf\ \frac{7}{2} = \frac{7}{2} \\ \\ \normalsize\ : \implies\sf\ L.H.S = R.H.S

\:\bullet \normalsize\frak{\underline{\underline \purple{Product  \: of \: roots-}}}

\normalsize\ : \implies\sf\ \alpha\beta = \frac{c}{a} \\ \\ \normalsize\ : \implies\sf\ 1 \times\ \frac{5}{2} = \frac{5}{2} \\ \\ \normalsize\ : \implies\sf\ L.H.S = R.H.S

\normalsize\ : \implies\sf\ Hence \: VeriFieD \: !!

Similar questions