Math, asked by SHYAM8648, 1 year ago

Find the zeros of the quadratic polynomial 2x sq -9-3x and verify the relationship between zeros and cofficients

Answers

Answered by creamiepie
1

 {2x}^{2}  - 3x - 9 = 0 \\  \\  =  > 2 {x}^{2}  - (6 - 3)x - 9 = 0 \\  \\  =  > 2 {x}^{2}  - 6x + 3x - 9 = 0 \\  \\  =  > 2x(x - 3) + 3(x - 3) = 0 \\  \\  =  > (x - 3)(2x  + 3) = 0 \\  \\  \\  \\ x - 3 = 0 \\  \\  =  > x = 3 \\  \\  \\  \\  \\ 2x + 3 = 0 \\  \\  =  > x =  \frac{ - 3}{2}


verification

sum \: of \: the \: zeroes \:  =  \frac{ - b}{a}  \\  \\  =  >  3  -   \frac{3}{2}  =  \frac{3}{2}  \\  \\  =  >  \frac{6 - 3}{2}  =  \frac{3}{2}  \\  \\  =  >  \frac{3}{2}  =  \frac{3}{2}  \\  \\ product \: of \: the \: zeroes \:  =  \frac{c}{a}  \\  \\  =  > 3 \times  \frac{ - 3}{2}  =   \frac{ - 9}{2}  \\  \\  =  >  \frac{ - 9}{2}  =  \frac{ - 9}{2}



verified
Similar questions