Math, asked by hpovaweub, 1 year ago

find the zeros of the quadratic polynomial 3 X ^ 2 - 17 X + 24 and verify the relationship between the zeros and its coefficient​

Answers

Answered by LovelyG
11

Answer:

\large{\underline{\boxed{\sf 3 \: and \: \dfrac{8}{3}}}}

Step-by-step explanation:

Given polynomial ;

P(x) = 3x² - 17x + 24

We can find the zeros of the polynomial by splitting the middle term.

⇒ 3x² - 17x + 24

⇒ 3x² - 9x - 8x + 24

⇒ 3x(x - 3) - 8(x - 3)

⇒ (x - 3)(3x - 8)

By zero product rule ;

⇒ x = 3 or x = \sf \dfrac{8}{3}

Hence, the zeros of the quadratic polynomial is 3 and 8/3.

_______________________.

Verification;

 \bf Sum \: of \: zeroes =  \frac{ - (coefficient \: of \: x)}{coefficient \: of \:  {x}^{2} }

 \implies \sf 3 +  \frac{8}{3}  =  \frac{ - ( - 17)}{3}  \\  \\ \implies \sf  \frac{9 + 8}{3}  =  \frac{17}{3}  \\  \\ \implies \sf  \frac{17}{3}  =  \frac{17}{3}  \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \underline{ \tt verified.}

 \bf Product \: of \: zeros =  \frac{constant \: term}{coefficient \: of \: x {}^{2} }

 \implies \sf 3 \times  \frac{8}{3}  =  \frac{24}{3}  \\  \\  \implies \sf 8 = 8 \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \underline{ \tt verified.}

Similar questions