Find the zeros of the quadratic polynomial ✓3xsquare -8x+4✓3
Answers
Answered by
14
Solution :
Given p(x ) = √3x² - 8x + 4√3
Let p( x ) = 0
√3x² - 8x + 4√3 = 0
Splitting the middle term, we get
=> √3x² -6x - 2x + 4√3 = 0
=> √3x² - √3 × √3 × 2x - 2x + 4√3 = 0
=> √3x( x - 2√3 ) - 2( x - 4√3 ) = 0
=> ( x - 2√3 )( √3x - 2 ) = 0
x - 2√3 = 0 or √3x - 2 = 0
x = 2√3 or x = 2/√3
Therefore ,
2√3 , -2/√3 are two zeroes of p(x).
••••
Given p(x ) = √3x² - 8x + 4√3
Let p( x ) = 0
√3x² - 8x + 4√3 = 0
Splitting the middle term, we get
=> √3x² -6x - 2x + 4√3 = 0
=> √3x² - √3 × √3 × 2x - 2x + 4√3 = 0
=> √3x( x - 2√3 ) - 2( x - 4√3 ) = 0
=> ( x - 2√3 )( √3x - 2 ) = 0
x - 2√3 = 0 or √3x - 2 = 0
x = 2√3 or x = 2/√3
Therefore ,
2√3 , -2/√3 are two zeroes of p(x).
••••
Similar questions