Math, asked by kornutejovathi, 1 year ago

Find the zeros of the quadratic polynomial 5x^2+12x+7and verify the relationship between the zeros and the coefficients

Answers

Answered by Anonymous
7

\mathfrak{\large{\underline{\underline{Given:-}}}}

Quadratic eqn:- \bold{ </strong><strong>5 {x}^{2}  + 12x + 7</strong><strong>}

\mathfrak{\large{\underline{\underline{</strong><strong>T</strong><strong>o</strong><strong> </strong><strong>find</strong><strong>:-}}}}

Relation between their zeros and coefficient.

\mathfrak{\large{\underline{\underline{</strong><strong>S</strong><strong>o</strong><strong>l</strong><strong>u</strong><strong>t</strong><strong>i</strong><strong>o</strong><strong>n</strong><strong>:-}}}}

Let a = 5 , b = 12 and c = 7

Let \</strong><strong>a</strong><strong>l</strong><strong>p</strong><strong>h</strong><strong>a</strong><strong> and \</strong><strong>b</strong><strong>e</strong><strong>t</strong><strong>a</strong><strong> be the roots of the given quadratic equation.

By using Middle splitting term,

\implies \bold{</strong><strong>5 {x}^{2}  + 12x + 7</strong><strong>}

\implies \bold{ </strong><strong>5 {x}^{2}  + 5x + 7x + 7</strong><strong>=</strong><strong> </strong><strong>0</strong><strong>}

\implies \bold{</strong><strong>5x( x + 1) + 7(x + 1)</strong><strong> </strong><strong>=</strong><strong> </strong><strong>0</strong><strong>}

\implies \bold{</strong><strong>(5x + 7)(x + 1) = 0</strong><strong> }

\implies \bold{</strong><strong>x =  \frac{ - 5}{7} or \: x =  - 1</strong><strong> }

Now, \</strong><strong>a</strong><strong>l</strong><strong>p</strong><strong>h</strong><strong>a</strong><strong> </strong><strong>=</strong><strong> </strong><strong>\frac{ - 5}{7}</strong><strong> and \</strong><strong>b</strong><strong>e</strong><strong>t</strong><strong>a</strong><strong> </strong><strong>=</strong><strong> </strong><strong>-</strong><strong>1</strong><strong>

The relationship between sum of zeroes and coefficient of Quadratic polynomial is given by :-

\boxed{\sf{ </strong><strong>\alpha  +  \beta  =  \frac{ - b}{a} </strong><strong>}}

\implies \bold{ </strong><strong>\frac{ - 5}{7}  + 1 =  \frac{ - 12}{5} </strong><strong>}

\implies \bold{</strong><strong>   \frac{ - 7 - 5}{ 5} </strong><strong>=</strong><strong> </strong><strong>\frac{ - 12}{5} </strong><strong> }[/tex</strong><strong>]</strong></p><p></p><p>[tex]\implies \bold{ \frac{-12}{5}  =  \frac{-12}{5} }

L. H. S = R. H. S verified.

Now,

Relation between products of zeroes and their coefficient is given by :-

\boxed{\sf{</strong><strong> \alpha  \beta  =  \frac{c}{a} </strong><strong>  }}

\implies \bold{</strong><strong>  \frac{ - 7}{5} \times  - 1  =  \frac{7}{5} </strong><strong>}

\implies \bold{</strong><strong> \frac{7}{5}  =  \frac{7}{5} </strong><strong>}

L. H. S = R. H. S hence ,verified..

Similar questions