Math, asked by parshvi21, 9 months ago

Find the zeros of the quadratic polynomial 6x^2 -3 -7x and verify the relationship between

the zeros and the coefficients.​

Answers

Answered by Rohith200422
5

Question:

Find the zeros of the quadratic polynomial 6x² -7x -3 and verify the relationship between the zeros and the coefficients.

To find:

★ To verify the relationship between the zeros and the coefficients.

Answer:

\star  \underline{ \: \bold{ (\alpha  +  \beta ) =\sf \pink{    \dfrac{7}{6}} } \: }

\star  \underline{ \:  \bold{ ( \alpha  \beta ) =\sf \pink{  \dfrac{ - 1}{2}} } \: }

Given:

★ An equation is given,  {6x}^{2}-7x-3 = 0

Step-by-step explanation:

Now factorization,

6 {x}^{2}  - 7x - 3 = 0

Product :- - 18 = - 9 × 2

Sum :- - 7 = ( - 9 ) + ( 2 )

\implies 6 {x}^{2}  - 9x + 2x - 3 = 0

\implies 3x(2x - 3) + 1(2x - 3) = 0

\implies (2x - 3)(3x + 1) = 0

\implies 2x - 3 = 0 \: \:  , \:  \: 3x + 1 = 0

\implies 2x  = 3 \: \:  , \:  \: 3x =  - 1

\implies  \underline{x =  \dfrac{3}{2} \: \: , \:  \: x =  \dfrac{ - 1}{3}  }

 \therefore \boxed{  \bold{\alpha  =  \frac{3}{2} \: and \:  \beta  =  \frac{ - 1}{3} } }

Now verification :-

6 {x}^{2}  - 7x - 3 = 0

 Here\: a=6,\:b=-7,\:c=-3

We know that,

 \boxed{Sum \: of \: roots =  \dfrac{ - b}{a} }

\hookrightarrow ( \alpha  +  \beta ) =  \dfrac{ - b}{a}

\hookrightarrow  \dfrac{3}{2}  +   \big(\dfrac{ - 1}{3} \big) =  \dfrac{ - ( - 7)}{6}

\hookrightarrow  \dfrac{9 - 2}{6}  =  \dfrac{7}{6}

\hookrightarrow  \boxed{ \dfrac{7}{6}  =  \dfrac{7}{6} }

  \underline{ \: \bold{ (\alpha  +  \beta ) =  \dfrac{7}{6}  =  \dfrac{7}{6} } \: }

________________________________________________

 \boxed{Product \: of \: roots =  \dfrac{ c}{a} }

\rightsquigarrow ( \alpha  \beta ) =  \dfrac{c}{a}

\rightsquigarrow  \dfrac{ \not{3}}{2}  \times  \dfrac{ - 1}{ \not{3}}  =  \dfrac{ - 3}{6}

\rightsquigarrow \boxed{  \dfrac{ - 1}{2}  =  \dfrac{ - 1}{2} }

  \underline{ \: \bold{ ( \alpha  \beta ) =  \dfrac{ - 1}{2}  =  \dfrac{ - 1}{2} } \: }

Hence verified .

Formula used:

 \bigstar \: Sum \: of \: roots =  \dfrac{ - b}{a}

 \bigstar \: Product \: of \: roots =  \dfrac{c}{a}

Similar questions