Math, asked by simhima, 10 months ago

Find the zeros of the quadratic polynomial and verify the relationship between the zeros and Co efficients t²-15

Answers

Answered by Anonymous
155

Given

  • Quadratic Polynomial → t² - 15

To find

  • Find the zeros of the quadratic polynomial and verify the relationship between the zeros and Co efficients t²-15

Solution

p(t) = t² - 15

Apply identity :

( - ) = (a + b)(a - b)

→ (t)² - (√15)² = 0

→ (t + √15)(t - √15)

Either

→ t + √15 = 0

→ t = - √15

Or

→ t - √15 = 0

→ t = √15

Hence, -15 and 15 are the zeros of given polynomial

Verification

Sum of zeros

→ -√15 + √15 = 0 = -b/a = -(coefficient of t)/(coefficient of t²)

Product of zeros

→ -√15 × √15 = -15 = c/a = (constant term)/(coefficient of t²)

Hence, verified

Answered by sethrollins13
109

✯✯ QUESTION ✯✯

Find the zeroes of the quadratic polynomial and verify the relationship between the zeroes and Co efficients t²-15.

━━━━━━━━━━━━━━━━━━━━

✰✰ ANSWER ✰✰

\longmapsto\tt{{t}^{2}-15=0}

\longmapsto\tt{{t}^{2}-\sqrt{{(15)}^{2}}=0}

Using Identity : -

\longmapsto\tt{{a}^{2}-{b}^{2}=(a-b)(a+b)}

\longmapsto\tt{(t-\sqrt{15)}\:(t+\sqrt{15)}}

Now ,

\longmapsto\tt{{t-\sqrt{15}=0}}

\longmapsto\tt\bold{t=\sqrt{15}}

\longmapsto\tt{{t+\sqrt{15}}=0}

\longmapsto\tt\bold{t=-\sqrt{15}}

So , 15 and -15 are the zeroes of polynomial t²-15...

Here : -

  • a = 1
  • b = 0
  • c = -15

Sum of Zeroes : -

\longmapsto\tt{\alpha+\beta=\dfrac{-b}{a}}

\longmapsto\tt{\sqrt{15}+(-\sqrt{15)}=\dfrac{0}{1}}

\longmapsto\tt{\sqrt{15}-\sqrt{-15}=0}

\longmapsto\tt\bold{0=0}

\orange\longmapsto\:\large\underline{\boxed{\bf\red{L.H.S}\blue{=}\pink{R.H.S}}}

Product of Zeroes : -

\longmapsto\tt{\alpha\beta=\dfrac{c}{a}}

\longmapsto\tt{\sqrt{15}\times(-\sqrt{15)}=\dfrac{-15}{1}}

\longmapsto\tt\bold{-15=-15}

\red\longmapsto\:\large\underline{\boxed{\bf\green{L.H.S}\orange{=}\purple{R.H.S}}}

HENCE VERIFIED

Similar questions