Math, asked by dibyansi44199, 2 months ago

find the zeros of the quadratic polynomial and verify the relation between zeros and its Coefficient 6x² + 3​

Answers

Answered by mkrawat4877
0

Answer:

⇒ x = -1/3

Hence, the zeros of the quadratic equation are 3/2 and -1/3. Therefore, the relationship between zeros and their coefficients is verified.

Step-by-step explanation:

please mark me brainliest mark please

Answered by Anonymous
7

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀☆⠀GIVEN  POLYNOMIAL :  6x² - 3 = 0

\qquad \dashrightarrow \sf 6x^2 - 3  \: =\:\:0\: \: \\\\\qquad \dashrightarrow \sf 3 \:\bigg( 2x^2  - 1 \:\bigg)  \: =\:\:0\: \: \\\\\qquad \dashrightarrow \sf 2x^2 - 1  \: =\:0\:\times \: 3\: \: \\\\\qquad \dashrightarrow \sf 2x^2 - 1  \: =\:\:0\: \: \\\\\qquad \dashrightarrow \sf 2x^2   \: =\:\:\:1\: \: \\\\\qquad \dashrightarrow \sf \:x^2\:=\:\dfrac{1}{2}\:  \:\\\\\qquad \dashrightarrow \sf \:x\:=\:\pm \:\sqrt{\dfrac{1}{2}}\:\:\\\\\qquad \dashrightarrow \sf \:x\:=\: \:\sqrt{\dfrac{1}{2}}\:\:\:or \:\:-\:\:\sqrt{\dfrac{1}{2}}  \: \: \\\\\qquad \therefore \underline {\boxed{\pmb{\purple{\frak{\:x\:= \: \:\sqrt{\dfrac{1}{2}}\:\:\:or \:\:-\:\:\sqrt{\dfrac{1}{2}} \:\:\: }}}}}\:\:\bigstar \\\\

\qquad \therefore \:\underline { \sf The \:zeroes \:of \:Polynomial \:are \: \bf \sqrt{1 /2} \:\: \sf and \:\bf -\sqrt{1/2} \:\:.}\\\\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

\qquad \bigstar \:\:\underline {\sf \: Verifying \: \:\bf \:Relationship\: \:\sf\:between \:\:\bf\:zeroes\:\sf\:and\:\bf Cofficients \:\sf\:\:of \:\:\:Polynomial \:\:}: \\\\

\qquad \underline {\boxed {\pmb {\red { \:\maltese \:\: Sum \: of \: zeroes \:}\: \:\purple{ ( \: \alpha \:+\beta \:)}\red{\:\::\:}}}}\\\\\qquad \dashrightarrow \sf \bigg( \:\: \alpha \:\:+ \: \beta \:\:\bigg) \:=\: \dfrac{-(Cofficient \:of\:x)\:}{Cofficient \:of \:x^2 \:\:}\:\:\\\\

 \qquad \dashrightarrow \sf \bigg( \:\: \:\sqrt{\dfrac{1}{2}}\:\:\bigg) \:+\:\bigg( \:-\sqrt{\dfrac{1}{2}}\:\:\bigg) \:=\: \dfrac{-(0)\:}{6 \:\:}\:\:\\\\

 \qquad \dashrightarrow \sf \bigg( \:\cancel {\: \:\sqrt{\dfrac{1}{2}}}\:\:\bigg) \:+\:\bigg( \cancel {\:-\sqrt{\dfrac{1}{2}}}\:\:\bigg) \:=\: \dfrac{-(0)\:}{6 \:\:}\:\:\\\\

 \qquad \dashrightarrow \sf 0 \:=\: \dfrac{-(0)\:}{6 \:\:}\:\:\\\\

 \qquad \dashrightarrow \sf 0 \:=\: 0\:\:\\\\

\qquad \therefore \underline {\boxed{\pmb{\purple{\frak{\:0 \:\:= \:\:0\: }}}}}\:\:\bigstar \\\\

⠀⠀⠀⠀⠀AND ,

\qquad \underline {\boxed {\pmb {\red { \:\maltese \:\: Product \: of \: zeroes \:}\: \:\purple{ ( \: \alpha \:\beta \:)}\red{\:\::\:}}}}\\\\\qquad \dashrightarrow \sf \bigg( \:\: \alpha \:\: \: \beta \:\:\bigg) \:=\: \dfrac{ \:Constant \:Term\:}{Cofficient \:of \:x^2 \:\:}\:\:\\\\

 \qquad \dashrightarrow \sf \bigg( \:\: \:\sqrt{\dfrac{1}{2}}\:\:\bigg) \:\times\:\bigg( \:-\sqrt{\dfrac{1}{2}}\:\:\bigg) \:=\: \dfrac{-3\:}{6 \:\:}\:\:\\\\

 \qquad \dashrightarrow \sf \:\: \:\sqrt{\dfrac{1}{2}}\:\: \:\times\: \:-\sqrt{\dfrac{1}{2}}\:\: \:=\: \dfrac{-3\:}{6 \:\:}\:\:\\\\

 \qquad \dashrightarrow \sf \:\: \dfrac{-1}{2}\:\: \:=\: \dfrac{-3\:}{6 \:\:}\:\:\\\\

 \qquad \dashrightarrow \sf \:\: \dfrac{-1}{2}\:\: \:=\: \cancel {\dfrac{-3\:}{6 \:\:}}\:\:\\\\

 \qquad \dashrightarrow \sf \:\: \dfrac{-1}{2}\:\: \:=\: \dfrac{-1\:}{2 \:\:}\:\:\\\\

\qquad \therefore \underline {\boxed{\pmb{\purple{\frak{\:\dfrac{-1}{2} \:\:= \:\:\dfrac{-1}{2}\: }}}}}\:\:\bigstar \\\\

⠀⠀⠀⠀⠀\therefore {\underline {\pmb{\bf{ Hence, \:Verified \:}}}}\\\\\\

Similar questions