Math, asked by jameswangsu88, 6 months ago

find the zeros of the quadratic polynomial p(x)-6x2-3-7x​

Answers

Answered by Anonymous
6

Step-by-step explanation:

its my pleasure to help you.

please mark me as a brainliest

Attachments:
Answered by Anonymous
65

\huge\sf\underline{\underline{\pink{ Answer:-}}}

zeros =  >  \frac{3}{2} \:  ,\frac{ - 1}{3}

\Large{\underline{\underline{\bf{QuEsTiOn:-}}}}

find the zeros of the quadratic polynomial

6x {}^{2}  - 3 - 7x

\sf\underline{\underline{\green{TO \: FIND \: }}}

Zeros of the quadratic polynomial ?

\huge\underline\mathbb{\red S\pink {0} \purple {L} \blue {UT} \orange {1}\green {ON :}}

 = >  6x {}^{2}  - 3 - 7x

 =  > 6x {}^{2}  - 7x - 3 \:  = 0

 =  > 6x {}^{2}  + 2x - 9x - 3 = 0

 =  > 2x(3x + 1) \:  - 3(3x + 1) = 0

 =  >( 2x - 3)(3x + 1) = 0

 =  &gt; Zeros =  \frac{3}{2} , \frac{3}{ - 1} </p><p>

verify -

 \alpha  +  \beta  =  \frac{ - b}{a}

  =  &gt; \frac{3}{2}   + ( \frac{ - 1}{  3} ) =  \frac{ - ( -7)}{6}

 =  &gt;  \frac{3}{2}  -  \frac{1}{3}  =  \frac{ 7}{6}

 =  &gt;  \frac{7}{6}  =  \frac{7}{6}

RHS = LHS

 =  &gt;  \alpha  \beta  =  \frac{c}{a}

  =  &gt; \frac{3}{2}  \times  \frac{ - 1}{3}  =   \frac{ - 3}{6}

 =  &gt;  \frac{ - 3} {6}  =  \frac{ - 3}{6}

 =  &gt;  \frac{ - 1}{2}  =  \frac{ - 1}{2}

RHS= LHS

\sf\underline{\underline{\green{HENCE, \: }}}

zeros =  \frac{3}{2}, \frac{ - 1}{3}

Similar questions