Math, asked by harshkhambhati497, 4 months ago

Find the zeros of the quadratic polynomial p(x)=s(x^+1)-x(a^+1) and verify the relationship between the zeros and the coefficients.​

Answers

Answered by mathdude500
4

Correct Statement is

  • Find the zeros of the quadratic polynomial p(x)=a(x^2+1)-x(a^2+1) and verify the relationship between the zeros and the coefficients.

Answer

Given:-

 \tt \: The  \:\:  polynomial \: p(x) \:  =  \: a( {x}^{2}  + 1) - x( {a}^{2}  +1 )

To find :-

  • zeros of the quadratic polynomial
  • verify the relationship between the zeros and the coefficients.

Solution:-

 \tt \: p(x) \:  = a( {x}^{2}  + 1) - x( {a}^{2}  + 1)

\tt \: p(x) \:  =  {ax}^{2}  + a -  {xa}^{2}  - x

\tt \: p(x) \:  = ( {ax}^{2}  -  {xa}^{2} ) + (a - x)

\tt \: p(x) \:  = ax(x - a) - 1(x - a)

\tt \: p(x) \:  = (ax - 1)(x - a)

Hence, zeros of p(x) are

  :  \implies  \boxed{\purple{\bf \: x \:  =  \: a \:  \: or \:  \: x \:  =  \: \dfrac{1}{a} }}

Now,

  \red{\tt \: Sum  \: of  \: zeros \:  = a \:  +  \: \dfrac{1}{a}  = \dfrac{ {a}^{2} + 1 }{a}}  -  - (i)

  \boxed{\red{ \tt \: Product  \: of  \: zeros \:  = a \times \dfrac{1}{a}  = 1}} -  - (ii)

Now, p(x) can be rewritten in standard form as

\tt \: p(x) \:  = a( {x}^{2}  + 1) - x( {a}^{2}  + 1)

\tt \: p(x) \:  =  {ax}^{2}   + a -  {xa}^{2}    - x

\tt \: p(x) \:  =  {ax}^{2}  - x( {a}^{2}  + 1) + a

Now, Consider

 \red{ \tt \:  - \dfrac{coefficient \: of \: x}{coefficient \: of \:  {x}^{2} }  = \dfrac{ {a}^{2} + 1 }{a}}  -  - (iii)

 \red{ \tt \: \dfrac{constant \: term}{coefficient \: of \:  {x}^{2} }  = \dfrac{a}{a}  = 1} -  - (iv)

Now, from (i), (ii), (iii), (iv), we concluded that

\boxed{\red{\sf Sum\ of\ the\ zeroes=\frac{-coefficient\ of\ x}{coefficient\ of\ x^{2}}}}

\boxed{\red{\sf Product\ of\ the\ zeroes=\frac{Constant}{coefficient\ of\ x^{2}}}}

\large{\boxed{\boxed{\bf{Hence, verified}}}}

Similar questions