Math, asked by samyoyo54321, 10 months ago

Find the zeros of the quadratic polynomial x square minus 2 and verify the relationship between the zeros and the coefficients
plz tell

Answers

Answered by Anonymous
1

\bold\red{\underline{\underline{Answer:}}}

\bold{Zeroes \ are \ -\sqrt2 \ and \ \sqrt2}

\bold\orange{Given:}

\bold{The \ given \ polynomial \ is}

\bold{=>x^{2}-2}

\bold\pink{To \ find:}

\bold{Zeroes \ of \ polynomial.}

\bold\green{\underline{\underline{Solution}}}

\bold{The \ given \ polynomial \ is}

\bold{=>x^{2}-2}

\bold{Here, \ a=1, \ b=0, \ and \ c=-2}

\bold{By \ identity}

\bold{a^{2}-b^{2}=(a+b)(a-b)}

\bold{=>x^{2}-(\sqrt2)^{2}}

\bold{=>(x+\sqrt2)(x-\sqrt2)}

\bold{\therefore{x=-\sqrt2 \ or \ \sqrt2}}

\bold\purple{\tt{\therefore{Zeroes \ are \ -\sqrt2 \ and \ \sqrt2}}}

_________________________________

\bold\blue{Verification}

\bold{Let \ \alpha \ be -\sqrt2 \ and \ \beta \ be \ \sqrt2}

\bold{Sum \ of \ zeroes=\frac{-b}{a}}

\bold{Product \ of \ zeroes=\frac{c}{a}}

_______________________________

\bold{\alpha+\beta=-\sqrt2+\sqrt2}

\bold{\alpha+\beta=0...(1)}

\bold{\frac{-b}{a}=\frac{0}{1}}

\bold{\frac{-b}{a}=0...(2)}

\bold{from \ (1) \ and \ (2)}

\bold{Sum \ of \ zeroes=\frac{-b}{a}}

________________________________

\bold{\alpha×\beta=-\sqrt2×\sqrt2}

\bold{\alpha×\beta=-2...(3)}

\bold{\frac{c}{a}=\frac{-2}{1}}

\bold{\frac{c}{a}=-2...(4)}

\bold{from \ (3) \ and (4)}

\bold{Product \ of \ zeroes=-2}

\bold{Hence, \ verified.}

Similar questions