Math, asked by mohitmanghani2004, 1 year ago

Find the zeros of the quadratic polynomial x2 +3x +2 and verify the relationship between the zeros and the co-efficient

Answers

Answered by Divyaalia
77

hey \: mate \: here \: is \: your \: answer...

_________________________

 {x}^{2}  + 3x + 2
x {}^{2}  + (2 + 1)x + 2
 {x}^{2}  + 2x + x + 2
x(x + 2) + 1(x + 2)
(x + 1)(x + 2)
(x + 1) = 0 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  (x + 2) = 0 \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  x =  - 1 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:x =  - 2



verification -  -  -  -

sum \: of \: zeros \:  =  \frac{b}{a}  \\  \\   \:  \:  \:  \:  \:  \:  \: - 1 + ( - 2) =  \frac{ - 3}{1}  \\   \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \: - 1 - 2 =  - 3 \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: - 3 =  - 3


product \: of \: zeros =  \frac{c}{a}  \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  - 1 \times  - 2 =  \frac{2}{1}  \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:2  = 2


hence \: verified..



_________________________________

hope \: it \: helps....

Answered by SushmitaAhluwalia
24

The zeroes of the given quadratic polynomial are 1, 2.

  • Given polynomial is    

                  x^{2} + 3x + 2            -----------------------(1)

  • If x_{1}, x_{2} are roots of a polynomial, then the polynomial is written as

                  x^{2} - (x_{1}  + x_{2} )x + x_{1} x_{2}  -----------------------(2)

  • Writing (1) in the form of (2), we get

                  x^{2} - (-2 - 1)x + 2

  • Comparing a and b, we get

                  x_{1} = -2, x_{2} = -1

  • Hence, the roots of given polynomial are 2, 1.
  • Verification of relationships:
  • (i) Sum of roots =  \frac{- coefficient of x}{coefficient of x^{2}} =

             -2-1 = -3/1

               -3 = -3

  • (ii) Product of roots = \frac{constant}{- coefficient of x^{2}}    

                (-2)(-1) = 2/1

                   2 = 2

Similar questions